256 research outputs found

    Preferential Solvation of P-nitroaniline in Alcohol-dioxan Binary Solvent Mixture

    Get PDF
    The Preferential solvation of p-nitroaniline (PNA) has been investigated by monitoring the intramolecular charge transfer band in different alcohol-dioxan binary solvent mixtures. The plots of observed spectroscopic transition energy vs. mole fraction confirm the presence of preferential solvation in the mixtures. In the higher mole fraction of alcohol PNA is preferentially solvated by dioxan while in the higher mole fraction of dioxan it is preferentially solvated by alcohol. This type of preferential solvation has been explained by hydrogen bonding between PNA and the solvent molecules. Besides hydrogen bonding, hydrophobicity of the alcohols is also an important factor during the solvation process

    Qualitative observation of reversible phase change in astrochemical ethanethiol ices using infrared spectroscopy

    Get PDF
    Here we report the first evidence for a reversible phase change in an ethanethiol ice prepared under astrochemical conditions. InfraRed (IR) spectroscopy was used to monitor the morphology of the ice using the Ssingle bondH stretching vibration, a characteristic vibration of thiol molecules. The deposited sample was able to switch between amorphous and crystalline phases repeatedly under temperature cycles between 10 K and 130 K with subsequent loss of molecules in every phase change. Such an effect is dependent upon the original thickness of the ice. Further work on quantitative analysis is to be carried out in due course whereas here we are reporting the first results obtained

    Investigation of voltage regulation in grid–connected PV system

    Get PDF
    In the present scenario the power demand on the load side is increasing day by day, so to balance the power demand and power supply various renewable energy comes to picture as the additional source of electricity generation. The power generated by various renewable resources such as solar, wind, tidal energy and geothermal sources is environmentally clean and have a less emission impact. Out of which PV system draws more attention because it generates energy with a much lower level of carbon dioxide emissions. In the proposed work the objective is to investigate the synchronisation of the grid-connected PV system in terms of voltage and frequency. It includes the P-V characteristics under the circumstances of MPPT technique such as perturb & observe (P&O) method can able to track the local maximum point. The proposed inverter is a voltage source H-Bridge inverter which is controlled using a Clarke and Park transformation to drive a controlled current into the grid to maintain the THD value within the standards. As the grid frequency is fluctuating between SRF-PLL is generally used to fix the output frequency and phase of the grid. It also includes with the design of a three-phase H-bridge inverter as an interface between PV system and grid system. The proposed work is designed and simulated in MATLAB SIMULINK 2017b environment

    NIR jets from a clustered region of massive star formation: Morphology and composition in the IRAS 18264-1152 region

    Get PDF
    Context. Massive stars play crucial roles in determining the physical and chemical evolution of galaxies. However, they form deeply embedded in their parental clouds, making it challenging to directly observe these stars and their immediate environments. It is known that accretion and ejection processes are intrinsically related, thus observing the massive protostellar outflows can provide crucial information about the processes governing massive star formation very close to the central engine. Aims. We aim to probe the IRAS 18264-1152 (also known as G19.88-0.53) high-mass star-forming complex in the near infrared (NIR) through its molecular hydrogen (H2) jets to analyse the morphology and composition of the line emitting regions and to compare with other outflow tracers. Methods. We observed the H2 NIR jets via K-band (1.9 2.5 μm) observations obtained with the integral field units VLT/SINFONI and VLT/KMOS. VLT/SINFONI provides the highest NIR angular resolution achieved so far for the central region of IRAS 18264-1152 (∼0.2). We compared the geometry of the NIR outflows with that of the associated molecular outflow, probed by CO (2-1) emission mapped with the Submillimeter Array. Results. We identify nine point sources in the SINFONI and KMOS fields of view. Four of these display a rising continuum in the K-band and are Brγ emitters, revealing that they are young, potentially jet-driving sources. The spectro-imaging analysis focusses on the H2 jets, for which we derived visual extinction, temperature, column density, area, and mass. The intensity, velocity, and excitation maps based on H2 emission strongly support the existence of a protostellar cluster in this region, with at least two (and up to four) different large-scale outflows, found through the NIR and radio observations. We compare our results with those found in the literature and find good agreement in the outflow morphology. This multi-wavelength comparison also allows us to derive a stellar density of ∼4000 stars pc-3. Conclusions. Our study reveals the presence of several outflows driven by young sources from a forming cluster of young, massive stars, demonstrating the utility of such NIR observations for characterising massive star-forming regions. Moreover, the derived stellar number density together with the geometry of the outflows suggest that stars can form in a relatively ordered manner in this cluster

    Deuterium fractionation across the infrared-dark cloud G034.77−00.55 interacting with the supernova remnant W44

    Get PDF
    Context. Supernova remnants (SNRs) may regulate star formation in galaxies. For example, SNR-driven shocks may form new molecular gas or compress pre-existing clouds and trigger the formation of new stars. / Aims. To test this scenario, we measured the deuteration of N2H+, DfracN2H+ – a well-studied tracer of pre-stellar cores – across the infrared-dark cloud (IRDC) G034.77-00.55, which is known to be experiencing a shock interaction with the SNR W44. / Methods. We use N2H+ and N2D+J = 1−0 single pointing observations obtained with the 30m antenna at the Instituto de Radioas-tronomia Millimetrica to infer DfracN2H+ towards five positions across the cloud, namely a massive core, different regions across the shock front, a dense clump, an+d ambient gas. / Results. We find DfracN2H+ in the range 0.03−0.1, which is several orders of magnitude larger than the cosmic D/H ratio (~10−5). The DfracN2H+ across the shock front is enhanced by more than a factor of 2 (DfracN2H+ ~ 0.05 - 0.07) with respect to the ambient gas (≤0.03) and simila+r to that measured generally in pre-stellar cores. Indeed, in the massive core and dense clump regions of this IRDC we measure DfracN2H+ ~ 0.01. / Conclusions. We find enhanced deuteration of N2H+ across the region of the shock, that is, at a level that is enhanced with respect to regions of unperturbed gas. It is possible that this has been induced by shock compression, which would then be indirect evidence that the shock is triggering conditions for future star formation. However, since unperturbed dense regions also show elevated levels of deuteration, further, higher-resolution studies are needed to better understand the structure and kinematics of the deuterated material in the shock region; for example, to decipher whether it is still in a relatively diffuse form or is already organised in a population of low-mass pre-stellar cores

    Airway management in cardiac arrest -- not a question of choice but of quality?

    Get PDF
    This study presented an innovative method in order to estimate training required for skilful and successful intubations during ED cardiac arrests. Video reviews were taken from a system that routinely records ED staff during cardiac arrests and as these recordings are already part of everyday clinical practice, it is likely that there is minimal Hawthorne effect. Cardiac arrest research often reiterates the fact that the basics should be done well. It is commendable that intubations by the residents in this observational study resulted in a modest mean delay in chest compressions of only 8.6 seconds for the intubation attempt. However, nearly a third of intubation attempts were unsuccessful at the first attempt, and there were 11 oesophageal intubations (albeit they were all recognised) in the 93 patients that were included
    corecore