618 research outputs found
Galileons as Wess-Zumino Terms
We show that the galileons can be thought of as Wess-Zumino terms for the
spontaneous breaking of space-time symmetries. Wess-Zumino terms are terms
which are not captured by the coset construction for phenomenological
Lagrangians with broken symmetries. Rather they are, in d space-time
dimensions, d-form potentials for (d+1)-forms which are non-trivial co-cycles
in Lie algebra cohomology of the full symmetry group relative to the unbroken
symmetry group. We introduce the galileon algebras and construct the
non-trivial (d+1)-form co-cycles, showing that the presence of galileons and
multi-galileons in all dimensions is counted by the dimensions of particular
Lie algebra cohomology groups. We also discuss the DBI and conformal galileons
from this point of view, showing that they are not Wess-Zumino terms, with one
exception in each case.Comment: 49 pages. v2 minor changes, version appearing in JHE
DBI Galileon and Late time acceleration of the universe
We consider 1+3 dimensional maximally symmetric Minkowski brane embedded in a
1+4 dimensional maximally symmetric Minkowski background. The resulting 1+3
dimensional effective field theory is of DBI (Dirac-Born-Infeld) Galileon type.
We use this model to study the late time acceleration of the universe. We study
the deviation of the model from the concordance \Lambda CDM behaviour. Finally
we put constraints on the model parameters using various observational data.Comment: 16 pages, 7 eps figures, Latex Style, new references added, corrected
missing reference
Effect of Nenas honey supplementation on the oxidative status of undergraduate students
Honey is a dietary antioxidant as it contains phenolic compounds, such as flavonoids and phenolic acids. Antioxidants are non-nutritive, biologically active ingredients in food that reduce oxidative stress. The antioxidant content in each type of honey varies depending on its source. This study was aimed to determine the effect of Nenas honey supplementation on the oxidative status of a group of healthy medical students. They were divided into two groups; control (n=10) and supplemented (n=13), where 1 tablespoon of Nenas honey was given each day. Blood sampling was done at baseline, 1st and 2nd month of the study for determination of DNA damage and antioxidant enzyme activities, such as superoxide dismutase (SOD), glutathione peroxidise (GPx), and catalase (CAT). Results showed that Nenas honey increased the level of DNA damage at the 1st month but reduced it significantly at the 2nd month as compared to control. GPx and CAT activities also decreased significantly with honey supplementation throughout the study, though no changes were observed in SOD activity. Fasting glucose levels remained within the normal range with honey supplementation. In conclusion, Nenas honey decreases oxidative stress which leads to a reduction of antioxidant enzyme activities in the body
Massive Gravity on de Sitter and Unique Candidate for Partially Massless Gravity
We derive the decoupling limit of Massive Gravity on de Sitter in an
arbitrary number of space-time dimensions d. By embedding d-dimensional de
Sitter into d+1-dimensional Minkowski, we extract the physical helicity-1 and
helicity-0 polarizations of the graviton. The resulting decoupling theory is
similar to that obtained around Minkowski. We take great care at exploring the
partially massless limit and define the unique fully non-linear candidate
theory that is free of the helicity-0 mode in the decoupling limit, and which
therefore propagates only four degrees of freedom in four dimensions. In the
latter situation, we show that a new Vainshtein mechanism is at work in the
limit m^2\to 2 H^2 which decouples the helicity-0 mode when the parameters are
different from that of partially massless gravity. As a result, there is no
discontinuity between massive gravity and its partially massless limit, just in
the same way as there is no discontinuity in the massless limit of massive
gravity. The usual bounds on the graviton mass could therefore equivalently
well be interpreted as bounds on m^2-2H^2. When dealing with the exact
partially massless parameters, on the other hand, the symmetry at m^2=2H^2
imposes a specific constraint on matter. As a result the helicity-0 mode
decouples without even the need of any Vainshtein mechanism.Comment: 30 pages. Some clarifications and references added. New subsection
'Symmetry and Counting in the Full Theory' added. New appendix 'St\"uckelberg
fields in the Na\"ive approach' added. Matches version published in JCA
Recommended from our members
CEP162 is an axoneme-recognition protein promoting ciliary transition zone assembly at the cilia base
The transition zone (TZ) is a specialized compartment found at the base of cilia, adjacent to the centriole distal end, where axonemal microtubules (MTs) are heavily cross-linked to the surrounding membrane to form a barrier that gates the ciliary compartment. A number of ciliopathy molecules have been found to associate with the TZ, but factors that directly recognize axonemal MTs to specify TZ assembly at the cilia base remain unclear. Here, through quantitative centrosome proteomics, we identified an axoneme-associated protein, CEP162, tethered specifically at centriole distal ends to promote TZ assembly. CEP162 interacts with core TZ components, and mediates their association with MTs. Loss of CEP162 arrests ciliogenesis at the stage of TZ assembly. Abolishing its centriolar tethering, however, allows CEP162 to stay on the growing end of the axoneme, and ectopically assemble TZ components at cilia tips. This generates extra-long cilia with strikingly swollen tips that actively release ciliary contents into the extracellular environment. CEP162 is thus an axoneme-recognition protein “pre-tethered” at centriole distal ends prior to ciliogenesis to promote and restrict TZ formation specifically at the cilia base
Large Scale Structures in Kinetic Gravity Braiding Model That Can Be Unbraided
We study cosmological consequences of a kinetic gravity braiding model, which
is proposed as an alternative to the dark energy model. The kinetic braiding
model we study is characterized by a parameter n, which corresponds to the
original galileon cosmological model for n=1. We find that the background
expansion of the universe of the kinetic braiding model is the same as the
Dvali-Turner's model, which reduces to that of the standard cold dark matter
model with a cosmological constant (LCDM model) for n equal to infinity. We
also find that the evolution of the linear cosmological perturbation in the
kinetic braiding model reduces to that of the LCDM model for n=\infty. Then, we
focus our study on the growth history of the linear density perturbation as
well as the spherical collapse in the nonlinear regime of the density
perturbations, which might be important in order to distinguish between the
kinetic braiding model and the LCDM model when n is finite. The theoretical
prediction for the large scale structure is confronted with the multipole power
spectrum of the luminous red galaxy sample of the Sloan Digital Sky survey. We
also discuss future prospects of constraining the kinetic braiding model using
a future redshift survey like the WFMOS/SuMIRe PFS survey as well as the
cluster redshift distribution in the South Pole Telescope survey.Comment: 41 pages, 20 figures; This version was accepted for publication in
JCA
Potential-driven Galileon inflation
For the models of inflation driven by the potential energy of an inflaton
field , the covariant Galileon Lagrangian
generally works to slow down the evolution of the field. On the other hand, if
the Galileon self-interaction is dominant relative to the standard kinetic
term, we show that there is no oscillatory regime of inflaton after the end of
inflation. This is typically accompanied by the appearance of the negative
propagation speed squared of a scalar mode, which leads to the
instability of small-scale perturbations. For chaotic inflation and natural
inflation we clarify the parameter space in which inflaton oscillates
coherently during reheating. Using the WMAP constraints of the scalar spectral
index and the tensor-to-scalar ratio as well, we find that the self coupling
of the potential is constrained to be very
much smaller than 1 and that the symmetry breaking scale of natural
inflation cannot be less than the reduced Planck mass . We also
show that, in the presence of other covariant Galileon Lagrangians, there are
some cases in which inflaton oscillates coherently even for the self coupling
of the order of 0.1, but still the instability associated with
negative is generally present.Comment: 22 pages, 15 figure
Interacting Spin-2 Fields
We construct consistent theories of multiple interacting spin-2 fields in
arbitrary spacetime dimensions using a vielbein formulation. We show that these
theories have the additional primary constraints needed to eliminate potential
ghosts, to all orders in the fields, and to all orders beyond any decoupling
limit. We postulate that the number of spin-2 fields interacting at a single
vertex is limited by the number of spacetime dimensions. We then show that, for
the case of two spin-2 fields, the vielbein theory is equivalent to the
recently proposed theories of ghost-free massive gravity and bi-metric gravity.
The vielbein formulation greatly simplifies the proof that these theories have
an extra primary constraint which eliminates the Boulware-Deser ghost.Comment: 42 pages, 3 figures. v3 alternative argument using constrained
spatial vielbeins has been removed (see footnote 3
- …
