786 research outputs found

    Regional Similarity of Leveed Lava Flows on the Mars Plains

    Get PDF
    The dynamics of lava flow movement are controlled by the fluid interior. Crust, solids, and nondeformable material can only retard the advance or spreading of a lava flow. Figure 1 shows a typical large, channelized lava flow found on the Mars plains. It has been suggested in [I] that such large leveed flows on the Mars plains were emplaced by a balance between the formation and shedding of crust as the flow advances. For the prototypical flow north of Pavonis Mons (Fig. I), such a balance leads to a flow morphology that approximately self-replicates at all locations along the flow path [2,3]. Moreover, most quantitative characteristics of emplacement (e.g., viscosity, volumetric flow rate) of the prototype flow at Pavonis Mons resembled those of large channelized lava flows on Earth. The exception was the relatively long, sustained supply of lava, on the order of a year as opposed to hours or days for terrestrial analogs

    Exploring Inflated Pahohoe Lava Flow Morphologies and the Effects of Cooling Using a New Simulation Approach

    Get PDF
    Pahoehoe lavas are recognized as an important landform on Earth, Mars and Io. Observations of such flows on Earth (e.g., Figure 1) indicate that the emplacement process is dominated by random effects. Existing models for lobate a`a lava flows that assume viscous fluid flow on an inclined plane are not appropriate for dealing with the numerous random factors present in pahoehoe emplacement. Thus, interpretation of emplacement conditions for pahoehoe lava flows on Mars requires fundamentally different models. A new model that implements a simulation approach has recently been developed that allows exploration of a variety of key influences on pahoehoe lobe emplacement (e.g., source shape, confinement, slope). One important factor that has an impact on the final topographic shape and morphology of a pahoehoe lobe is the volumetric flow rate of lava, where cooling of lava on the lobe surface influences the likelihood of subsequent breakouts

    Inferred Lunar Boulder Distributions at Decimeter Scales

    Get PDF
    Block size distributions of impact deposits on the Moon are diagnostic of the impact process and environmental effects, such as target lithology and weathering. Block size distributions are also important factors in trafficability, habitability, and possibly the identification of indigenous resources. Lunar block sizes have been investigated for many years for many purposes [e.g., 1-3]. An unresolved issue is the extent to which lunar block size distributions can be extrapolated to scales smaller than limits of resolution of direct measurement. This would seem to be a straightforward statistical application, but it is complicated by two issues. First, the cumulative size frequency distribution of observable boulders rolls over due to resolution limitations at the small end. Second, statistical regression provides the best fit only around the centroid of the data [4]. Confidence and prediction limits splay away from the best fit at the endpoints resulting in inferences in the boulder density at the CPR scale that can differ by many orders of magnitude [4]. These issues were originally investigated by Cintala and McBride [2] using Surveyor data. The objective of this study was to determine whether the measured block size distributions from Lunar Reconnaissance Orbiter Camera - Narrow Angle Camera (LROC-NAC) images (m-scale resolution) can be used to infer the block size distribution at length scales comparable to Mini-RF Circular Polarization Ratio (CPR) scales, nominally taken as 10 cm. This would set the stage for assessing correlations of inferred block size distributions with CPR returns [6]

    Comparing Volcanic Terrains on Venus and Earth: How Prevalent are Pyroclastic Deposits on Venus?

    Get PDF
    In the last several years, astronomers have discovered several exoplanets with masses less than 10 times that of the Earth [1]. Despite the likely abundance of Earth-sized planets, little is known about the pathways through which these planets evolve to become habitable or uninhabitable. Venus and Earth have similar planetary radii and solar orbital distance, and therefore offer a chance to study in detail the divergent evolution of two objects that now have radically different climates. Understanding the extent, duration, and types of volcanism present on Venus is an important step towards understanding how volatiles released from the interior of Venus have influenced the development of the atmosphere. Placing constraints on the extent of explosive volcanism on Venus can provide boundary conditions for timing, volumes, and altitudes for atmospheric injection of volatiles. In addition, atmospheric properties such as near-surface temperature and density affect how interior heat and volatiles are released. Radar image data for Venus can be used to determine the physical properties of volcanic deposits, and in particular, they can be used to search for evidence of pyroclastic deposits that may result from explosive outgassing of volatiles. For explosive volcanism to occur with the current high atmospheric pressure, magma volatile contents must be higher than is typical on Earth (at least 2-4% by weight) [2,3]. In, addition, pyroclastic flows should be more prevalent on Venus than convective plumes and material may not travel as far from the vent source as it would on Earth [3]. Areas of high radar backscatter with wispy margins that occur near concentric fractures on Sapho Patera [4] and several coronae in Eastern Eistla Regio [5] have been attributed to collapse of eruption columns and runout of rough materials

    A New Approach to Inferences for Pancake Domes on Venus

    Get PDF
    Figure 1 shows a radar image and topography for flat-topped, steep-sided "pancake" domes on Venus. At least 145 such domes have been identified on Venus [I] and are thought to be volcanic in origin [2]. Based on analysis of the dome surfaces, [3] suggested that only the late stage surface fractures are preserved, indicating entrainment and annealing of fractures during emplacement, consistent with a basaltic composition. Figure 1 shows a radar image and topography for flat-topped, steep-sided "pancake" domes on Venus. At least 145 such domes have been identified on Venus [I] and are thought to be volcanic in origin [2]. Based on analysis of the dome surfaces, [3] suggested that only the late stage surface fractures are preserved, indicating entrainment and annealing of fractures during emplacement, consistent with a basaltic composition

    Emplacement Scenarios for Volcanic Domes on Venus

    Get PDF
    One key to understanding the history of resurfacing on Venus is better constraints on the emplacement timescales for the range of volcanic features visible on the surface. A figure shows a Magellan radar image and topography for a putative lava dome on Venus. 175 such domes have been identified with diameters ranging from 19 - 94 km, and estimated thicknesses as great as 4 km. These domes are thought to be volcanic in origin and to have formed by the flow of viscous fluid (i.e., lava) on the surface

    Characterizing Volcanic Eruptions on Venus: Some Realistic (?) Scenarios

    Get PDF
    When Pioneer Venus arrived at Venus in 1978, it detected anomalously high concentrations of SO2 at the top of the troposphere, which subsequently declined over the next five years. This decline in SO2 was linked to some sort of dynamic process, possibly a volcanic eruption. Observations of SO2 variability have persisted since Pioneer Venus. More recently, scientists from the Venus Express mission announced that the SPICAV (Spectroscopy for Investigation of Characteristics of the Atmosphere of Venus) instrument had measured varying amounts of SO2 in the upper atmosphere; VIRTIS (Visible and Infrared Thermal Imaging Spectrometer) measured no similar variations in the lower atmosphere (ESA, 4 April, 2008). In addition, Fegley and Prinn stated that venusian volcanoes must replenish SO2 to the atmosphere, or it would react with calcite and disappear within 1.9 my. Fegley and Tremain suggested an eruption rate on the order of approx 1 cubic km/year to maintain atmospheric SO2; Bullock and Grinspoon posit that volcanism must have occurred within the last 20-50 my to maintain the sulfuric acid/water clouds on Venus. The abundance of volcanic deposits on Venus and the likely thermal history of the planet suggest that it is still geologically active, although at rates lower than Earth. Current estimates of resurfacing rates range from approx 0.01 cubic km/yr to approx 2 cubic km/yr. Demonstrating definitively that Venus is still volcanically active, and at what rate, would help to constrain models of evolution of the surface and interior, and help to focus future exploration of Venus

    The Indiana Congressional Delegation and Foreign Policy Issues 1939-1941

    Get PDF
    This paper is an examination of the foreign policy attitudes of Indiana\u27s United States Senators and Representatives during the critical years before the Second World War. My purpose is to determine whether these particular Mid-Westerners were a part of the isolationist bloc in Congress which exerted a significant influence on the formulation of foreign policy. The scope of the study is limited to an elucidation of the individual views as expressed in Congress b the members of the delegation and an analysis of the campaign for re-election waged by each of them as it relates to the broader issue

    Rheology of Lava Flows on Europa and the Emergence of Cryovolcanic Domes

    Get PDF
    There is ample evidence that Europa is currently geologically active. Crater counts suggest that the surface is no more than 90 Myr old, and cryovolcanism may have played a role in resurfacing the satellite in recent geological times. Europa's surface exhibits many putative cryovolcanic features, and previous investigations have suggested that a number of domes imaged by the Galileo spacecraft may be volcanic in origin. Consequently, several Europa domes have been modeled as viscous effusions of cryolava. However, previous models for the formation of silicic domes on the terrestrial planets contain fundamental shortcomings. Many of these shortcomings have been alleviated in our new modeling approach, which warrants a re-assessment of the possibility of cryovolcanic domes on Europa

    Volatile Transport by Volcanic Plumes on Earth, Venus and Mars

    Get PDF
    Explosive volcanic eruptions can produce sustained, buoyant columns of ash and gas in the atmosphere (Fig. 1). Large flood basalt eruptions may also include significant explosive phases that generate eruption columns. Such eruptions can transport volcanic volatiles to great heights in the atmosphere. Volcanic eruption columns can also redistribute chemical species within the atmosphere by entraining ambient atmosphere at low altitudes and releasing those species at much higher altitudes
    corecore