11 research outputs found

    Myosin IIA Modulates T Cell Receptor Transport and CasL Phosphorylation during Early Immunological Synapse Formation

    Get PDF
    Activation of T cell receptor (TCR) by antigens occurs in concert with an elaborate multi-scale spatial reorganization of proteins at the immunological synapse, the junction between a T cell and an antigen-presenting cell (APC). The directed movement of molecules, which intrinsically requires physical forces, is known to modulate biochemical signaling. It remains unclear, however, if mechanical forces exert any direct influence on the signaling cascades. We use T cells from AND transgenic mice expressing TCRs specific to the moth cytochrome c 88–103 peptide, and replace the APC with a synthetic supported lipid membrane. Through a series of high spatiotemporal molecular tracking studies in live T cells, we demonstrate that the molecular motor, non-muscle myosin IIA, transiently drives TCR transport during the first one to two minutes of immunological synapse formation. Myosin inhibition reduces calcium influx and colocalization of active ZAP-70 (zeta-chain associated protein kinase 70) with TCR, revealing an influence on signaling activity. More tellingly, its inhibition also significantly reduces phosphorylation of the mechanosensing protein CasL (Crk-associated substrate the lymphocyte type), raising the possibility of a direct mechanical mechanism of signal modulation involving CasL

    Hyperbolic optics and superlensing in room-temperature KTN from self-induced k-space topological transitions

    No full text
    A hyperbolic medium will transfer super-resolved optical waveforms with no distortion, support negative refraction, superlensing, and harbor nontrivial topological photonic phases. Evidence of hyperbolic effects is found in periodic and resonant systems for weakly diffracting beams, in metasurfaces, and even naturally in layered systems. At present, an actual hyperbolic propagation requires the use of metamaterials, a solution that is accompanied by constraints on wavelength, geometry, and considerable losses. We show how nonlinearity can transform a bulk KTN perovskite into a broadband 3D hyperbolic substance for visible light, manifesting negative refraction and superlensing at room-temperature. The phenomenon is a consequence of giant electro-optic response to the electric field generated by the thermal diffusion of photogenerated charges. Results open new scenarios in the exploration of enhanced light-matter interaction and in the design of broadband photonic devices

    A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors

    No full text
    Ebola virus disease causes widespread and highly fatal epidemics in human populations. Today, there is still great need for point-of-care tests for diagnosis, patient management and surveillance, both during and post outbreaks. We present a point-of-care test comprising an immunochromatographic strip and a smartphone reader, which detects and semiquantifies Ebola-specific antibodies in human survivors. We developed a Sudan virus glycoprotein monoplex platform and validated it using sera from 90 human survivors and 31 local noninfected controls. The performance of the glycoprotein monoplex was 100% sensitivity and 98% specificity compared to standard whole antigen enzyme-linked immunosorbent assay (ELISA), and it was validated with freshly collected patient samples in Uganda. Moreover, we constructed a multiplex test for simultaneous detection of antibodies against three recombinant Sudan virus proteins. A pilot study comprising 15 survivors and 5 noninfected controls demonstrated sensitivity and specificity of 100% compared to standard ELISA. Finally, we developed a second multiplex subtype assay for the identification of exposure to three related EVD species: Sudan virus, Bundibugyo virus and Ebola virus (formerly Zaire) using recombinant viral glycoprotein. This multiplex test could distinguish between the host’s immunity to specific viral species and identify cross-reactive immunity. These developed serological platforms consisted of capture ligands with high specificity and sensitivity, in-house developed strips and a compatible smartphone application. These platforms enabled rapid and portable testing, data storage and sharing as well as geographical tagging of the tested individuals in Uganda. This platform holds great potential as a field tool for diagnosis, vaccine development, and therapeutic evaluation

    Requirement of Nck adaptors for actin dynamics and cell migration stimulated by platelet-derived growth factor B

    No full text
    The Nck family of Src homology (SH) 2/SH3 domain adaptors functions to link tyrosine phosphorylation induced by extracellular signals with downstream regulators of actin dynamics. We investigated the role of mammalian Nck adaptors in signaling from the activated platelet-derived growth factor (PDGF) receptor (PDGFβR) to the actin cytoskeleton. We report here that Nck adaptors are required for cytoskeletal reorganization and chemotaxis stimulated by PDGF-B. Analysis of tyrosine-phosphorylated proteins demonstrated that Crk-associated substrate (p130(Cas)), not the activated PDGFβR itself, is the major Nck SH2 domain-binding protein in PDGF-B-stimulated cells. Both Nck- and p130(Cas)-deficient cells fail to display cytoskeletal rearrangements, including the formation of membrane ruffles and the disassembly of actin bundles, typically shown by their WT counterparts in response to PDGF-B. Furthermore, Nck and p130(Cas) colocalize in phosphotyrosine-enriched membrane ruffles induced by PDGF-B in NIH 3T3 cells. These results suggest that Nck adaptors play an essential role in linking the activated PDGFβR with actin dynamics through a pathway that involves p130(Cas)

    A Serological Point-of-Care Test for the Detection of IgG Antibodies against Ebola Virus in Human Survivors

    No full text
    Ebola virus disease causes widespread and highly fatal epidemics in human populations. Today, there is still great need for point-of-care tests for diagnosis, patient management and surveillance, both during and post outbreaks. We present a point-of-care test comprising an immunochromatographic strip and a smartphone reader, which detects and semiquantifies Ebola-specific antibodies in human survivors. We developed a Sudan virus glycoprotein monoplex platform and validated it using sera from 90 human survivors and 31 local noninfected controls. The performance of the glycoprotein monoplex was 100% sensitivity and 98% specificity compared to standard whole antigen enzyme-linked immunosorbent assay (ELISA), and it was validated with freshly collected patient samples in Uganda. Moreover, we constructed a multiplex test for simultaneous detection of antibodies against three recombinant Sudan virus proteins. A pilot study comprising 15 survivors and 5 noninfected controls demonstrated sensitivity and specificity of 100% compared to standard ELISA. Finally, we developed a second multiplex subtype assay for the identification of exposure to three related EVD species: Sudan virus, Bundibugyo virus and Ebola virus (formerly Zaire) using recombinant viral glycoprotein. This multiplex test could distinguish between the host’s immunity to specific viral species and identify cross-reactive immunity. These developed serological platforms consisted of capture ligands with high specificity and sensitivity, in-house developed strips and a compatible smartphone application. These platforms enabled rapid and portable testing, data storage and sharing as well as geographical tagging of the tested individuals in Uganda. This platform holds great potential as a field tool for diagnosis, vaccine development, and therapeutic evaluation
    corecore