17 research outputs found
Enhanced Bactericidal Activity of Silver Thin Films Deposited via Aerosol-Assisted Chemical Vapor Deposition
Silver thin films were deposited on SiO2-barrier-coated float glass, fluorine-doped tin oxide (FTO) glass, Activ glass, and TiO2-coated float glass via AACVD using silver nitrate at 350 °C. The films were annealed at 600 °C and analyzed by X-ray powder diffraction, X-ray photoelectron spectroscopy, UV/vis/near-IR spectroscopy, and scanning electron microscopy. All the films were crystalline, and the silver was present in its elemental form and of nanometer dimension. The antibacterial activity of these samples was tested against Escherichia coli and Staphylococcus aureus in the dark and under UV light (365 nm). All Ag-deposited films reduced the numbers of E. coli by 99.9% within 6 h and the numbers of S. aureus by 99.9% within only 2 h. FTO/Ag reduced bacterial numbers of E. coli to below the detection limit after 60 min and caused a 99.9% reduction of S. aureus within only 15 min of UV irradiation. Activ/Ag reduced the numbers of S. aureus by 66.6% after 60 min and TiO2/Ag killed 99.9% of S. aureus within 60 min of UV exposure. More remarkably, we observed a 99.9% reduction in the numbers of E. coli within 6 h and the numbers of S. aureus within 4 h in the dark using our novel TiO2/Ag system
Use of post-stratification in composite sampling for estimating mean
We show with the results of a study conducted in the Hamadan Province, Iran as to how the use of composite sampling for estimating mean zinc concentration in the soil can help reduce analytical costs by reducing the number of analysis required. We also introduce post-stratification methodology in the composition step to take advantage of possible spatial dispersion. We speculate that the zinc concentration value depends on the sample location, we first stratified the sample set and then composite units from different strata randomly. The results of a simulation study show that the use of this approach not only reduces the total costs but also increases the precision of the estimator.Acknowledgments We would like to thank Professor G. P. Patil for his helpful comments and suggestions on an earlier draft and for his allowing us to see the draft manuscript of the monograph on composite sampling Patil et al. (2010). H. Khademi, S. Ayoubi and M. Taghipour greatly acknowledge the financial support for the study from the Isfahan University of Technology.Scopu
Integrated Electro-Ozonation and Fixed-Bed Column for the Simultaneous Removal of Emerging Contaminants and Heavy Metals from Aqueous Solutions
In the current study, an integrated physiochemical method was utilized to remove tonalide (TND) and dimethyl phthalate (DMP) (as emerging contaminants, ECs), and nickel (Ni) and lead (Pb) (as heavy metals), from synthetic wastewater. In the first step of the study, pH, current (mA/cm2), and voltage (V) were set to 7.0, 30, and 9, respectively; then the removal of TND, DMP, Ni, and Pb with an electro-ozonation reactor was optimized using response surface methodology (RSM). At the optimum reaction time (58.1 min), ozone dosage (9.4 mg L−1), initial concentration of ECs (0.98 mg L−1), and initial concentration of heavy metals (28.9 mg L−1), the percentages of TND, DMP, Ni, and Pb removal were 77.0%, 84.5%, 59.2%, and 58.2%, respectively. For the electro-ozonation reactor, the ozone consumption (OC) ranged from 1.1 kg to 3.9 kg (kg O3/kg Ecs), and the specific energy consumption (SEC) was 6.95 (kWh kg−1). After treatment with the optimum electro-ozonation parameters, the synthetic wastewater was transferred to a fixed-bed column, which was filled with a new composite adsorbent (named BBCEC), as the second step of the study. BBCEC improved the efficacy of the removal of TND, DMP, Ni, and Pb to more than 92%
Comparative efficacy of herbal essences with amphotricin B and ketoconazole on Candida albicans in the in vitro condition
Background: The Candida species are the most important factors of fungal infections in humans and animals. It is necessary to prepare antifungal or antimicrobial drugs because of increasing drug resistance. The natural treatment of diseases of bacterial origin using medicinal plants is important. In this study the effect of antimicrobial medicinal herbal essential oils and conventional antifungal drugs were evaluated on Candida albicans in vitro.
Methods: Disc diffusion assay and the microbroth dilution method were used to investigate the anticandidal effects of Foeniculum vulgare Mill, Satureja hortensis L, Cuminum cyminum, and Zataria multiflora Boiss essential oils. The anticandidal effect of these essential oils was compared with that of amphotricin B and ketoconazole in vitro. We then measured the chemical composition of the studied essential oils using gas chromatography–mass spectroscopy.
Results: Z. multiflora Boiss essential oil at the minimum inhibitory concentration (MIC) of 34 μg/mL and minimal lethal concentration [i.e., minimal fungicidal concentration (MFC)] of 64 μg/mL had more powerful anti-Candida activity than the other essential oils. C. cyminum essential oil showed the least effect on the tested fungus. A comparison of the effect of the studied essential oils and antifungal drugs showed that the antifungal effect on the C. albicans fungus was better with the fungicides than with the essential oils.
Conclusion: In the present study, essential oils with different components showed antifungal activity (especially Z. multiflora Boiss essential oil). They can therefore be used as new antifungal substances