9 research outputs found

    Histone deacetylase inhibitors valproate and trichostatin A are toxic to neuroblastoma cells and modulate cytochrome P450 1A1, 1B1 and 3A4 expression in these cells

    Get PDF
    Histone deacetylase inhibitors such as valproic acid (VPA) and trichostatin A (TSA) were shown to exert antitumor activity. Here, the toxicity of both drugs to human neuroblastoma cell lines was investigated using MTT test, and IC50 values for both compounds were determined. Another target of this work was to evaluate the effects of both drugs on expression of cytochrome P450 (CYP) 1A1, 1B1 and 3A4 enzymes, which are known to be expressed in neuroblastoma cells. A malignant subset of neuroblastoma cells, so-called N-type cells (UKF-NB-3 cells) and the more benign S-type neuroblastoma cells (UKF-NB-4 and SK-N-AS cell lines) were studied from both two points of view. VPA and TSA inhibited the growth of neuroblastoma cells in a dose-dependent manner. The IC50 values ranging from 1.0 to 2.8 mM and from 69.8 to 129.4 nM were found for VPA and TSA, respectively. Of the neuroblastoma tested here, the N-type UKF-NB-3 cell line was the most sensitive to both drugs. The different effects of VPA and TSA were found on expression of CYP1A1, 1B1 and 3A4 enzymes in individual neuroblastoma cells tested in the study. Protein expression of all these CYP enzymes in the S-type SK-N-AS cell line was not influenced by either of studied drugs. On the contrary, in another S-type cell line, UKF-NB-4, VPA and TSA induced expression of CYP1A1, depressed levels of CYP1B1 and had no effect on expression levels of CYP3A4 enzyme. In the N-type UKF-NB-3 cell line, the expression of CYP1A1 was strongly induced, while that of CYP1B1 depressed by VPA and TSA. VPA also induced the expression of CYP3A4 in this neuroblastoma cell line

    DNA and histone deacetylases as targets for neuroblastoma treatment

    Get PDF
    Neuroblastoma, a tumor of the peripheral sympathetic nervous system, is the most frequent solid extra cranial tumor in children and is a major cause of death from neoplasia in infancy. Still little improvement in therapeutic options has been made, requiring a need for the development of new therapies. In our laboratory, we address still unsettled questions, which of mechanisms of action of DNA-damaging drugs both currently use for treatment of human neuroblastomas (doxorubicin, cis-platin, cyclophosphamide and etoposide) and another anticancer agent decreasing growth of neuroblastomas in vitro, ellipticine, are predominant mechanism(s) responsible for their antitumor action in neuroblastoma cell lines in vitro. Because hypoxia frequently occurs in tumors and strongly correlates with advanced disease and poor outcome caused by chemoresistance, the effects of hypoxia on efficiencies and mechanisms of actions of these drugs in neuroblastomas are also investigated. Since the epigenetic structure of DNA and its lesions play a role in the origin of human neuroblastomas, pharmaceutical manipulation of the epigenome may offer other treatment options also for neuroblastomas. Therefore, the effects of histone deacetylase inhibitors on growth of neuroblastoma and combination of these compounds with doxorubicin, cis-platin, etoposide and ellipticine as well as mechanisms of such effects in human neuroblastona cell lines in vitro are also investigated. Such a study will increase our knowledge to explain the proper function of these drugs on the molecular level, which should be utilized for the development of new therapies for neuroblastomas

    HD-MB03 is a novel Group 3 medulloblastoma model demonstrating sensitivity to histone deacetylase inhibitor treatment

    No full text
    Medulloblastomas are the most common malignant brain tumors in childhood. Emerging evidence suggests that medulloblastoma comprises at least four distinct diseases (WNT, SHH, Group 3 and 4) with different biology, clinical presentation, and outcome, with especially poor prognosis in Group 3. The tight connection of biology and clinical behavior in patients emphasizes the need for subgroup-specific preclinical models in order to develop treatments tailored to each subgroup. Herein we report on the novel cell line HD-MB03, isolated from tumor material of a patient with metastasized Group 3 medulloblastoma, and preclinical testing of different histone deacetylase inhibitors (HDACis) in this model. HD-MB03 cells grow long term in vitro and form metastatic tumors in vivo upon orthotopic transplantation. HD-MB03 cells reflect the original Group 3 medulloblastoma at the histological and molecular level, showing large cell morphology, similar expression patterns for markers Ki67, p53, and glial fibrillary acidic protein (GFAP), a gene expression profile most closely matching Group 3 medulloblastomas, and persistence of typical molecular alterations, i.e., isochromosome 17q [i(17q)] and MYC amplification. Protein expression analysis of HDACs 2, 5, 8, and 9 as well as the predictive marker HR23B showed intermediate to strong expression, suggesting sensitivity to HDACis. Indeed, treatment with HDACis Helminthosporium carbonum (HC)-toxin, vorinostat, and panobinostat revealed high sensitivity to this novel drug class, as well as a radiation-sensitizing effect with significantly increased cell death upon concomitant treatment. In summary, our data indicate that HD-MB03 is a suitable preclinical model for Group 3 medulloblastoma, and HDACis could represent a therapeutic option for this subgroup
    corecore