71 research outputs found

    MeV oxygen ion implantation induced compositional intermixing in AlAs/GaAs superlattices

    Get PDF
    We present in this letter an investigation of compositional intermixing in AlAs/GaAs superlattices induced by 2 MeV oxygen ion implantation. The results are compared with implantation at 500 keV. In addition to Al intermixing in the direct lattice damage region by nuclear collision spikes, as is normally present in low-energy ion implantation, Al interdiffusion has also been found to take place in the subsurface region where MeV ion induced electronic spike damage dominates and a uniform strain field builds up due to defect generation and diffusion. Uniform compositional intermixing of the superlattices results after subsequent thermal annealing when Al interdiffusion is stimulated through recovery of the implantation-induced lattice strain field, the reconstruction and the redistribution of lattice defects, and annealing of lattice damage

    Influence of substrate temperature on lattice strain field and phase transition in MeV oxygen ion implanted GaAs crystals

    Get PDF
    A detailed study of the influence of substrate temperature on the radiation-induced lattice strain field and crystalline-to-amorphous (c-a) phase transition in MeV oxygen ion implanted GaAs crystals has been made using channeling Rutherford backscattering spectroscopy, secondary ion mass spectrometry, and the x-ray rocking curve technique. A comparison has been made between the cases of room temperature (RT) and low temperature (LT) (about 100 K) implantation. A strong in situ dynamic annealing process is found in RT implantation at a moderate beam current, resulting in a uniform positive strain field in the implanted layer. LT implantation introduces a freeze-in effect which impedes the recombination and diffusion of initial radiation-created lattice damage and defects, and in turn drives more efficiently the c-a transition as well as strain saturation and relaxation. The results are interpreted with a spike damage model in which the defect production process is described in terms of the competition between defect generation by nuclear spikes and defects diffusion and recombination stimulated by electronic spikes. It is also suggested that the excess population of vacancies and their complexes is responsible for lattice spacing expansion in ion-implanted GaAs crystals

    Assessing the application of miscible CO2 flooding in oil reservoirs: a case study from Pakistan

    Get PDF
    Miscible carbon dioxide (CO2) flooding has been recognized as a promising approach to enhance the recovery of oil reservoirs. However, depending on the injection strategy and rock/fluid characteristics, efficiency of the miscible CO2flooding varies from reservoir to reservoir. Although, many studies have been carried out to evaluate the performance of the miscible CO2flooding, a specific strategy which can be strictly followed for a hydrocarbon reservoir has not been established yet. The aim of this study is to assess one of Pakistan’s oil reservoirs for miscible CO2flooding by applying a modified screening criterion and numerical modeling. As such, the most recent miscible CO2screening criteria were modified, and a numerical modeling was applied on the prospective reservoir. Based on the results obtained, South oil reservoir (S3) is chosen for a detailed assessment of miscible CO2flooding. It was also found that implementation of CO2water-alternating gas (CO2-WAG) injection at early stages of production can increase the production life of the reservoir

    Retinal status analysis method based on feature extraction and quantitative grading in OCT images

    Get PDF
    Background: Optical coherence tomography (OCT) is widely used in ophthalmology for viewing the morphology of the retina, which is important for disease detection and assessing therapeutic effect. The diagnosis of retinal diseases is based primarily on the subjective analysis of OCT images by trained ophthalmologists. This paper describes an OCT images automatic analysis method for computer-aided disease diagnosis and it is a critical part of the eye fundus diagnosis. Methods: This study analyzed 300 OCT images acquired by Optovue Avanti RTVue XR (Optovue Corp., Fremont, CA). Firstly, the normal retinal reference model based on retinal boundaries was presented. Subsequently, two kinds of quantitative methods based on geometric features and morphological features were proposed. This paper put forward a retinal abnormal grading decision-making method which was used in actual analysis and evaluation of multiple OCT images. Results: This paper showed detailed analysis process by four retinal OCT images with different abnormal degrees. The final grading results verified that the analysis method can distinguish abnormal severity and lesion regions. This paper presented the simulation of the 150 test images, where the results of analysis of retinal status showed that the sensitivity was 0.94 and specificity was 0.92.The proposed method can speed up diagnostic process and objectively evaluate the retinal status. Conclusions: This paper aims on studies of retinal status automatic analysis method based on feature extraction and quantitative grading in OCT images. The proposed method can obtain the parameters and the features that are associated with retinal morphology. Quantitative analysis and evaluation of these features are combined with reference model which can realize the target image abnormal judgment and provide a reference for disease diagnosi
    corecore