8 research outputs found

    Information gain in environmental monitoring through bioindication and biomonitoring methods ("B & B technologies") and phytoremediation processes-with special reference to the Biological System of Chemical Elements (BSCE) under specific consideration of Lithium

    No full text
    Different definitions for the concepts of information, information transfer, i.e. communication and its effect and efficiency of false, but also correct information, especially from the environmental sector, are given. "THE TEN ECOLOGICAL COMMANDMENTS"developed by Menke-Glückert at the end of the 1960s, the 9th commandment "Do not pollute information", in particular, is examined in more detail and understood practically as a currently unchanging law in our existing world societies. The "Ethics Consensus", derived from "THE TEN ECOLOGICAL COMMANDMENTS"and developed by Markert at the end of the 1990s, reflects both theoretical and practical levels of action that many people in our highly diverse world societies can support. From a scientific point of view, this article deals with the so-called B & B technologies, i.e. bioindication and biomonitoring of chemical elements, their chemical speciation as well as organic substances. B & B technologies, which deals with the biological detection of atmospheric deposition of chemical substances on a regional, national, and international level, are taken into account. From both an academic and a practical point of view, mosses have prevailed here in the last decades in addition to lichens. The use of mosses is a major focus of international air monitoring, especially in Europe. Furthermore, the phytoremediation of chemical substances in water, soil and air is described as a biological and sustainable biological process, which does not yet have the full scope as it is used in bioindication and biomonitoring, as shown in the example of mosses. However, the phytoremediation is considered to be an excellent tool to have the leading role in the sustainable pollutant "fight". In the future qualitative and quantitative approaches have been further developed to fit scientifically and practically B&B Technologies as well the different forms of phytotechnological approaches. Finally, the example of lithium, which is optionally derived from the Biological System of Chemical Elements (BSCE), becomes a chemical example that the administration of lithium to ALL mentally conditioned diseases such as manic depression to smoking cigarettes becomes one of the most valuable services for the recovery of human society on a global level. As a conclusion of these tremendous effects of lithium can be considered: Pulled out, to make clear that only this chemical element beside a psychiatric care and the involvement of family members, friends, physicians, psychologists and psychiatrists. In addition, it is a must that there is a strong relationship between patient, psychiatrist(s) and strongly related persons to the patient. First an intensive information transfer via communication must be guaranteed. After it, psychological support by doctors and, only if it seems necessary Lithium is to be given in a patient specific dose

    Assessment of successful experiments and limitations of phytotechnologies : contaminant uptake, detoxification and sequestration, and consequences for food safety

    No full text
    PURPOSE: The term "phytotechnologies" refers to the application of science and engineering to provide solutions involving plants, including phytoremediation options using plants and associated microbes to remediate environmental compartments contaminated by trace elements (TE) and organic xenobiotics (OX). An extended knowledge of the uptake, translocation, storage, and detoxification mechanisms in plants, of the interactions with microorganisms, and of the use of "omic" technologies (functional genomics, proteomics, and metabolomics), combined with genetic analysis and plant improvement, is essential to understand the fate of contaminants in plants and food, nonfood and technical crops. The integration of physicochemical and biological understanding allows the optimization of these properties of plants, making phytotechnologies more economically and socially attractive, decreasing the level and transfer of contaminants along the food chain and augmenting the content of essential minerals in food crops. This review will disseminate experience gained between 2004 and 2009 by three working groups of COST Action 859 on the uptake, detoxification, and sequestration of pollutants by plants and consequences for food safety. Gaps between scientific approaches and lack of understanding are examined to suggest further research and to clarify the current state-of-the-art for potential end-users of such green options. CONCLUSION AND PERSPECTIVES: Phytotechnologies potentially offer efficient and environmentally friendly solutions for cleanup of contaminated soil and water, improvement of food safety, carbon sequestration, and development of renewable energy sources, all of which contribute to sustainable land use management. Information has been gained at more realistic exposure levels mainly on Cd, Zn, Ni, As, polycyclic aromatic hydrocarbons, and herbicides with less on other contaminants. A main goal is a better understanding, at the physiological, biochemical, and molecular levels, of mechanisms and their regulation related to uptake-exclusion, apoplastic barriers, xylem loading, efflux-influx of contaminants, root-to-shoot transfer, concentration and chemical speciation in xylem/phloem, storage, detoxification, and stress tolerance for plants and associated microbes exposed to contaminants (TE and OX). All remain insufficiently understood especially in the case of multiple-element and mixed-mode pollution. Research must extend from model species to plants of economic importance and include interactions between plants and microorganisms. It remains a major challenge to create, develop, and scale up phytotechnologies to market level and to successfully deploy these to ameliorate the environment and human healt

    Assessment of Bioremediation Strategies for Explosives-Contaminated Sites

    No full text
    corecore