5 research outputs found
The role of schools in children and young people’s self-harm and suicide: systematic review and meta-ethnography of qualitative research
Densité et vaccination : quels impacts sur la circulation de l’influenza aviaire hautement pathogène dans le Sud-Ouest ?
International audienceSince 2016, several epizootics of highly pathogenic avian influenza viruses H5N9 and H5N1 clade 2.3.4.4b occurred in France. These epizootics had devastating socioeconomic impact, especially in the historically affected region in the south-west, but also more recently in the west of the country. The density of poultry farms in these two areas is very high, explaining at least in part that most outbreaks happened there. In this context, we studied the impact of reducing the density of poultry farms on the virus spread, especially in highly dense areas. Moreover, vaccination has been authorized in the European Union since 2023, and is used in France since October 2023. Thus, we also studied the impact of vaccination on the between-farms transmission of avian influenza. We first used an epidemiological model of highly pathogenic avian influenza to explore various scenarios where the density of duck farms was reduced, and then we expanded the same model to explore vaccination strategies. This model was developed in a previous study. It was calibrated and validated using data on the 2016–2017 highly pathogenic avian influenza H5N8 epizootic. We compared the basic reproduction number (expected number of contaminated farms by one infectious farm) of the different scenarios with the basic reproduction number of the baseline scenario (with the observed density and no vaccination).Depuis 2016, la France a subi de multiples épizooties dues à des virus influenza aviaire hautement pathogènes (IAHP) H5N8 et H5N1 clade 2.3.4.4b. Ces épizooties ont eu des répercussions économiques et sociales dramatiques, notamment dans le Sud-Ouest, la première région touchée historiquement, mais aussi plus récemment dans le Grand Ouest. Ces deux régions se caractérisent notamment par des densités d’élevages avicoles très élevées, qui expliquent au moins en partie qu’elles aient été particulièrement atteintes. Dans ce contexte, nous nous sommes intéressés à l’impact de la réduction de la densité d’élevage sur la circulation du virus, en particulier dans les zones les plus denses. De plus, la vaccination étant autorisée dans l’Union Européenne depuis 2023, et son utilisation programmée en France, nous nous sommes questionnés sur l’impact de cette mesure sur la transmission entre les élevages. A l’aide d’un modèle épidémiologique, nous avons étudié différents scénarios de réduction de la densité et différentes stratégies vaccinales sur la dynamique de transmission de l’influenza aviaire hautement pathogène entre élevages dans le Sud-Ouest. Ce modèle, développé dans une étude précédente, a été calibré et validé sur l’épizootie d’IAHP H5N8 de 2016-2017. Nous avons comparé les différentes mesures en étudiant la dynamique du nombre de reproduction effective au cours du temps (nombre attendu de fermes contaminées par ferme infectieuse) ainsi que la taille et la durée de l’épizootie, en comparaison avec le scénario de référence (dans lequel seules les mesures de gestion historique ont été appliquées, sans réduction de densité et sans vaccination). Les résultats ont permis de formuler des recommandations sur les stratégies les plus efficaces, permettant ainsi d’apporter une aide à la décision
Elucidating the spatio-temporal dynamics of an emerging wildlife pathogen using approximate Bayesian computation
Emerging pathogens constitute a severe threat for human health and biodiversity. Determining the status (native or non-native) of emerging pathogens, and tracing back their spatio-temporal dynamics, is crucial to understand the eco-evolutionary factors promoting their emergence, to control their spread and mitigate their impacts. However, tracing back the spatio-temporal dynamics of emerging wildlife pathogens is challenging because (i) they are often neglected until they become sufficiently abundant and pose socio-economical concerns and (ii) their geographical range is often little known. Here, we combined classical population genetics tools and approximate Bayesian computation (i.e. ABC) to retrace the dynamics of Tracheliastes polycolpus, a poorly documented pathogenic ectoparasite emerging in Western Europe that threatens several freshwater fish species. Our results strongly suggest that populations of T. polycolpus in France emerged from individuals originating from a unique genetic pool that were most likely introduced in the 1920s in central France. From this initial population, three waves of colonization occurred into peripheral watersheds within the next two decades. We further demonstrated that populations remained at low densities, and hence undetectable, during 10 years before a major demographic expansion occurred, and before its official detection in France. These findings corroborate and expand the few historical records available for this emerging pathogen. More generally, our study demonstrates how ABC can be used to determine the status, reconstruct the colonization history and infer key evolutionary parameters of emerging wildlife pathogens with low data availability, and for which samples from the putative native area are inaccessible
