108 research outputs found

    Processing of Bi–Sr–Ca–Cu–O glasses using platinum and alumina crucibles

    Get PDF
    Reactions with alumina and platinum crucibles were studied during the preparation of Bi2Sr2Ca1Cu2Oy “2212” glasses. In particular, reactions with Al2O3 are of interest since alumina is a potential substrate material in applications of this superconductor. Glasses processed using alumina crucibles were completely homogeneous and free of secondary phases although the material contained 2.26 at. % Al in solution. After heat treatments, Al was found in the form of SrCaAlOy particles located primarily along grain boundaries of the 2212 superconducting phase. Platinum contamination was minimal (14−xCaxCu24O41, and 2201 as second phases. Differential thermal analysis (DTA) suggested that the crystallization processes were essentially the same for all samples although the small amount of Al seemed to slow the kinetics leading to the formation of 2212. Neither Al nor Pt was detected within the 2212 phase. The measured superconducting compositions in each annealed sample were nearly the same with identical transition temperatures of 88 K. Overall differences in stoichiometry were accommodated by changes in the number and composition of the secondary phases present

    Vortex dynamics in layered superconductors with correlated defects: influence of interlayer coupling

    Full text link
    We report a detailed study of the vortex dynamics and vortex phase diagrams of two amorphous Ta_0.3Ge_0.7/Ge multilayered films with intrinsic coplanar defects, but different interlayer coupling. A pinned Bose-glass phase in the more weakly coupled sample exists only below a cross-over field H* in striking contrast to the strongly coupled film. Above H* the flux lines are thought to break up into pancake vortices and the cross-over field is significantly increased when the field is aligned along the extended defects. The two films show different vortex creep excitations in the Bose-glass phase.Comment: zip file: 1 RevTex, 5 figures (png

    Resistive Transition and Upper Critical Field in Underdoped YBa_2Cu_3O_{6+x} Single Crystals

    Full text link
    A superconducting transition in the temperature dependence of the ab-plane resistivity of underdoped YBa_2Cu_3O_{6+x} crystals in the range T_c<30 K has been investigated. Unlike the case of samples with the optimal level of doping, the transition width increased insignificantly with magnetic field, and in the range T_c<13 K it decreased with increasing magnetic field. The transition point T_c(B) was determined by analyzing the fluctuation conductivity. The curves of B_{c2}(T) measured in the region T/T_c>0.1 did not show a tendency to saturation and had a positive second derivative everywhere, including the immediate neighborhood of T_c. The only difference among the curves of B_{c2}(T) for different crystal states is the scales of T and B, so they can be described in terms of a universal function, which fairly closely follows Alexandrov's model of boson superconductivity.Comment: 10 Revtex pages, 6 figures, uses psfig.st

    Vortex Plastic Motion in Twinned Superconductors

    Full text link
    We present simulations, without electrodynamical assumptions, of B(x,y,H(t)),M(H(t))B(x,y,H(t)), M(H(t)), and Jc(H(t))J_c(H(t)), in hard superconductors, for a variety of twin-boundary pinning potential parameters, and for a range of values of the density and strength of the pinning sites. We numerically solve the overdamped equations of motion of up to 10^4 flux-gradient-driven vortices which can be temporarily trapped at 106\sim 10^6 pinning centers. These simulations relate macroscopic measurements (e.g., M(H), ``flame'' shaped B(x,y)B(x,y) profiles) with the underlying microscopic pinning landscape and the plastic dynamics of individual vortices

    Evidence for vortex staircases in the whole angular range due to competing correlated pinning mechanisms

    Full text link
    We analyze the angular dependence of the irreversible magnetization of YBa2_2Cu3_3O7_7 crystals with columnar defects inclined from the c-axis. At high fields a sharp maximum centered at the tracks' direction is observed. At low fields we identify a lock-in phase characterized by an angle-independent pinning strength and observe an angular shift of the peak towards the c-axis that originates in the material anisotropy. The interplay among columnar defects, twins and ab-planes generates a variety of staircase structures. We show that correlated pinning dominates for all field orientations.Comment: 9 figures, 4 figure

    Longitudinal and transverse dissipation in a simple model for the vortex lattice with screening

    Full text link
    Transport properties of the vortex lattice in high temperature superconductors are studied using numerical simulations in the case in which the non-local interactions between vortex lines are dismissed. The results obtained for the longitudinal and transverse resistivities in the presence of quenched disorder are compared with the results of experimental measurements and other numerical simulations where the full interaction is considered. This work shows that the dependence on temperature of the resistivities is well described by the model without interactions, thus indicating that many of the transport characteristics of the vortex structure in real materials are mainly a consequence of the topological configuration of the vortex structure only. In addition, for highly anisotropic samples, a regime is obtained where longitudinal coherence is lost at temperatures where transverse coherence is still finite. I discuss the possibility of observing this regime in real samples.Comment: 9 pages, 7 figures included using epsf.st

    First order phase transition of the vortex lattice in twinned YBa2Cu3O7 single crystals in tilted magnetic fields

    Full text link
    We present an exhaustive analysis of transport measurements performed in twinned YBa2Cu3O7 single crystals which stablishes that the vortex solid-liquid transition is first order when the magnetic field H is applied at an angle theta away from the direction of the twin planes. We show that the resistive transitions are hysteretic and the V-I curves are non-linear, displaying a characteristic s-shape at the melting line Hm(T), which scales as epsilon(theta)Hm(T,theta). These features are gradually lost when the critical point H*(theta) is approached. Above H*(theta) the V-I characteristics show a linear response in the experimentally accessible V-I window, and the transition becomes reversible. Finally we show that the first order phase transition takes place between a highly correlated vortex liquid in the field direction and a solid state of unknown symmetry. As a consequence, the available data support the scenario for a vortex-line melting rather than a vortex sublimation as recently suggested [T.Sasagawa et al. PRL 80, 4297 (1998)].Comment: 10 pages, 8 figures, submitted to PR

    Patterned Irradiation of YBa_2Cu_3O_(7-x) Thin Films

    Full text link
    We present a new experiment on YBa_2Cu_3O_{7-x} (YBCO) thin films using spatially resolved heavy ion irradiation. Structures consisting of a periodic array of strong and weak pinning channels were created with the help of metal masks. The channels formed an angle of +/-45 Deg with respect to the symmetry axis of the photolithographically patterned structures. Investigations of the anisotropic transport properties of these structures were performed. We found striking resemblance to guided vortex motion as it was observed in YBCO single crystals containing an array of unidirected twin boundaries. The use of two additional test bridges allowed to determine in parallel the resistivities of the irradiated and unirradiated parts as well as the respective current-voltage characteristics. These measurements provided the input parameters for a numerical simulation of the potential distribution of the Hall patterning. In contrast to the unidirected twin boundaries in our experiment both strong and weak pinning regions are spatially extended. The interfaces between unirradiated and irradiated regions therefore form a Bose-glass contact. The experimentally observed magnetic field dependence of the transverse voltage vanishes faster than expected from the numerical simulation and we interpret this as a hydrodynamical interaction between a Bose-glass phase and a vortex liquid.Comment: 7 pages, 8 Eps figures included. Submitted to PR

    Effect of electron irradiation on vortex dynamics in YBa_2Cu_3O_{7-x} single crystals

    Full text link
    We report on drastic change of vortex dynamics with increase of quenched disorder: for rather weak disorder we found a single vortex creep regime, which we attribute to a Bragg-glass phase, while for enhanced disorder we found an increase of both the depinning current and activation energy with magnetic field, which we attribute to entangled vortex phase. We also found that introduction of additional defects always increases the depinning current, but it increases activation energy only for elastic vortex creep, while it decreases activation energy for plastic vortex creep.Comment: 4 pages, 3 figures, submited to Phys. Rev.
    corecore