6,651 research outputs found

    A Simple Model for Estimating Water Balance and Salinity of Reservoirs and Outflow

    Get PDF
    Reservoir storage reduces fluctuation in streamflow salinity, yet increases outflow salinity because of water evaporation. These processes are highly relevant to developing water management strategy, yet the method to predict outflow salinity has not been adequately examined. The study reported here examined the water and salt balance in a reservoir using a two-layer model. This model assumes that inflow blends with the storage, but the water evaporation takes place from the surface layer, and the percolation losses from the subsurface. The thickness of the first layer where salinity increases with evaporation was estimated through calibration against the measured outflow salinity. The changes in salinity were computed using a moving average method on a monthly time step. This model was applied first to Red Bluff Reservoir of the Middle Pecos River, then to Elephant Butte, Amistad, and Falcon along the Rio Grande. The outflow salinity projected by the model was in good agreement with the measured, except under a few circumstances where mixing of inflow and reservoir storage was suspected to be incomplete. The accuracy of prediction can be improved by improving the estimate of initial salinity of reservoir storage, which is currently taken as being equal to outflow salinity at the onset of the simulation

    Mechanically-Induced Transport Switching Effect in Graphene-based Nanojunctions

    Get PDF
    We report a theoretical study suggesting a novel type of electronic switching effect, driven by the geometrical reconstruction of nanoscale graphene-based junctions. We considered junction struc- tures which have alternative metastable configurations transformed by rotations of local carbon dimers. The use of external mechanical strain allows a control of the energy barrier heights of the potential profiles and also changes the reaction character from endothermic to exothermic or vice-versa. The reshaping of the atomic details of the junction encode binary electronic ON or OFF states, with ON/OFF transmission ratio that can reach up to 10^4-10^5. Our results suggest the possibility to design modern logical switching devices or mechanophore sensors, monitored by mechanical strain and structural rearrangements.Comment: 10 pages, 4 figure

    COSMOS: A Hybrid N-Body/Hydrodynamics Code for Cosmological Problems

    Get PDF
    We describe a new hybrid N-body/hydrodynamical code based on the particle-mesh (PM) method and the piecewise-parabolic method (PPM) for use in solving problems related to the evolution of large-scale structure, galaxy clusters, and individual galaxies. The code, named COSMOS, possesses several new features which distinguish it from other PM-PPM codes. In particular, to solve the Poisson equation we have written a new multigrid solver which can determine the gravitational potential of isolated matter distributions and which properly takes into account the finite-volume discretization required by PPM. All components of the code are constructed to work with a nonuniform mesh, preserving second-order spatial differences. The PPM code uses vacuum boundary conditions for isolated problems, preventing inflows when appropriate. The PM code uses a second-order variable-timestep time integration scheme. Radiative cooling and cosmological expansion terms are included. COSMOS has been implemented for parallel computers using the Parallel Virtual Machine (PVM) library, and it features a modular design which simplifies the addition of new physics and the configuration of the code for different types of problems. We discuss the equations solved by COSMOS and describe the algorithms used, with emphasis on these features. We also discuss the results of tests we have performed to establish that COSMOS works and to determine its range of validity.Comment: 43 pages, 14 figures, submitted to ApJS and revised according to referee's comment

    Negative differential resistance in nanotube devices

    Full text link
    Carbon nanotube junctions are predicted to exhibit negative differential resistance, with very high peak-to-valley current ratios even at room temperature. We treat both nanotube p-n junctions and undoped metal-nanotube-metal junctions, calculating quantum transport through the self-consistent potential within a tight-binding approximation. The undoped junctions in particular may be suitable for device integration.Comment: 4 pages, 4 figures, to appear in Physical Review Letter

    Magnetically Accreting Isolated Old Neutron Stars

    Get PDF
    Previous work on the emission from isolated old neutron stars (IONS) accreting the inter-stellar medium (ISM) focussed on gravitational capture - Bondi accretion. We propose a new class of sources which accrete via magnetic interaction with the ISM. While for the Bondi mechanism, the accretion rate decreases with increasing NS velocity, in magnetic accretors (MAGACs="magics") the accretion rate increases with increasing NS velocity. MAGACs will be produced among high velocity (~> 100 km s-1) high magnetic field (B> 1e14 G) radio pulsars - the ``magnetars'' - after they have evolved first through magnetic dipole spin-down, followed by a ``propeller'' phase (when the object sheds angular momentum on a timescale ~< 1e10 yr). The properties of MAGACS may be summarized thus: dipole magnetic fields of B~>1e14 G; minimum velocities relative to the ISM of >25-100 km s-1, depending on B, well below the median in the observed radio-pulsar population; spin-periods of >days to years; accretion luminosities of 1e28- 1e31 ergs s-1 ; and effective temperatures kT=0.3 - 2.5 keV if they accrete onto the magnetic polar cap. We find no examples of MAGACs among previously observed source classes (anomalous X-ray pulsars, soft-gamma-ray repeaters or known IONS). However, MAGACs may be more prevelant in flux-limited X-ray catalogs than their gravitationally accreting counterparts.Comment: ApJ, accepte

    A Simple Model for Estimating Water Balance and Salinity of Reservoirs and Outflow

    Get PDF
    Reservoir storage reduces fluctuation in streamflow salinity, yet increases outflow salinity because of water evaporation. These processes are highly relevant to developing water management strategy, yet the method to predict outflow salinity has not been adequately examined. The study reported here examined the water and salt balance in a reservoir using a two-layer model. This model assumes that inflow blends with the storage, but the water evaporation takes place from the surface layer, and the percolation losses from the subsurface. The thickness of the first layer where salinity increases with evaporation was estimated through calibration against the measured outflow salinity. The changes in salinity were computed using a moving average method on a monthly time step. This model was applied first to Red Bluff Reservoir of the Middle Pecos River, then to Elephant Butte, Amistad, and Falcon along the Rio Grande. The outflow salinity projected by the model was in good agreement with the measured, except under a few circumstances where mixing of inflow and reservoir storage was suspected to be incomplete. The accuracy of prediction can be improved by improving the estimate of initial salinity of reservoir storage, which is currently taken as being equal to outflow salinity at the onset of the simulation

    Kinematic Control of the Inertiality of the System of Tycho-2 and UCAC2 Stellar Proper Motions

    Full text link
    Based on the Ogorodnikov-Milne model, we analyze the proper motions of Tycho-2 and UCAC2 stars. We have established that the model component that describes the rotation of all stars under consideration around the Galactic y axis differs significantly from zero at various magnitudes. We interpret this rotation found using the most distant stars as a residual rotation of the ICRS/Tycho-2 system relative to the inertial reference frame. For the most distant (d900d\approx900 pc) Tycho-2 and UCAC2 stars, the mean rotation around the Galactic y axis has been found to be M13=0.37±0.04M_{13}=-0.37\pm0.04 mas yr1^{-1}. The proper motions of UCAC2 stars with magnitudes in the range 1215m12-15^m are shown to be distorted appreciably by the magnitude equation in μαcosδ\mu_\alpha\cos\delta, which has the strongest effect for northern-sky stars with a coefficient of 0.60±0.05-0.60\pm0.05 mas yr1^{-1} mag1^{-1}. We have detected no significant effect of the magnitude equation in the proper motions of UCAC2 stars brighter than 11m\approx11^m.Comment: 15 pages, 6 figure

    On non-uniform smeared black branes

    Full text link
    We investigate charged dilatonic black pp-branes smeared on a transverse circle. The system can be reduced to neutral vacuum black branes, and we perform static perturbations for the reduced system to construct non-uniform solutions. At each order a single master equation is derived, and the Gregory-Laflamme critical wavelength is determined. Based on the non-uniform solutions, we discuss thermodynamic properties of this system and argue that in a microcanonical ensemble the non-uniform smeared branes are entropically disfavored even near the extremality, if the spacetime dimension is D13+pD \le 13 +p, which is the critical dimension for the vacuum case. However, the critical dimension is not universal. In a canonical ensemble the vacuum non-uniform black branes are thermodynamically favorable at D>12+pD > 12+p, whereas the non-uniform smeared branes are favorable at D>14+pD > 14+p near the extremality.Comment: 24 pages, 2 figures; v2: typos corrected, submitted to Class.Quant.Gra
    corecore