11,376 research outputs found

    Solving the puzzle of an unconventional phase transition for a 2d dimerized quantum Heisenberg model

    Full text link
    Motivated by the indication of a new critical theory for the spin-1/2 Heisenberg model with a spatially staggered anisotropy on the square lattice as suggested in \cite{Wenzel08}, we re-investigate the phase transition of this model induced by dimerization using first principle Monte Carlo simulations. We focus on studying the finite-size scaling of ρs12L\rho_{s1} 2L and ρs22L\rho_{s2} 2L, where LL stands for the spatial box size used in the simulations and ρsi\rho_{si} with i{1,2}i \in \{1,2\} is the spin-stiffness in the ii-direction. Remarkably, while we do observe a large correction to scaling for the observable ρs12L\rho_{s1}2L as proposed in \cite{Fritz11}, the data for ρs22L\rho_{s2}2L exhibit a good scaling behavior without any indication of a large correction. As a consequence, we are able to obtain a numerical value for the critical exponent ν\nu which is consistent with the known O(3) result with moderate computational effort. Specifically, the numerical value of ν\nu we determine by fitting the data points of ρs22L\rho_{s2}2L to their expected scaling form is given by ν=0.7120(16)\nu=0.7120(16), which agrees quantitatively with the most accurate known Monte Carlo O(3) result ν=0.7112(5)\nu = 0.7112(5). Finally, while we can also obtain a result of ν\nu from the observable second Binder ratio Q2Q_2 which is consistent with ν=0.7112(5)\nu=0.7112(5), the uncertainty of ν\nu calculated from Q2Q_2 is more than twice as large as that of ν\nu determined from ρs22L\rho_{s2}2L.Comment: 7 figures, 1 table; brief repor

    Modelling thermal flow in a transition regime using a lattice Boltzmann approach

    Get PDF
    Lattice Boltzmann models are already able to capture important rarefied flow phenomena, such as velocity-slip and temperature jump, provided the effects of the Knudsen layer are minimal. However, both conventional hydrodynamics, as exemplified by the Navier-Stokes-Fourier equations, and the lattice Boltzmann method fail to predict the nonlinear velocity and temperature variations in the Knudsen layer that have been observed in kinetic theory. In the present paper, we propose an extension to the lattice Boltzmann method that will enable the simulation of thermal flows in the transition regime where Knudsen layer effects are significant. A correction function is introduced that accounts for the reduction in the mean free path near a wall. This new approach is compared with direct simulation Monte Carlo data for Fourier flow and good qualitative agreement is obtained for Knudsen numbers up to 1.58

    Strength of Higher-Order Spin-Orbit Resonances

    Full text link
    When polarized particles are accelerated in a synchrotron, the spin precession can be periodically driven by Fourier components of the electromagnetic fields through which the particles travel. This leads to resonant perturbations when the spin-precession frequency is close to a linear combination of the orbital frequencies. When such resonance conditions are crossed, partial depolarization or spin flip can occur. The amount of polarization that survives after resonance crossing is a function of the resonance strength and the crossing speed. This function is commonly called the Froissart-Stora formula. It is very useful for predicting the amount of polarization after an acceleration cycle of a synchrotron or for computing the required speed of the acceleration cycle to maintain a required amount of polarization. However, the resonance strength could in general only be computed for first-order resonances and for synchrotron sidebands. When Siberian Snakes adjust the spin tune to be 1/2, as is required for high energy accelerators, first-order resonances do not appear and higher-order resonances become dominant. Here we will introduce the strength of a higher-order spin-orbit resonance, and also present an efficient method of computing it. Several tracking examples will show that the so computed resonance strength can indeed be used in the Froissart-Stora formula. HERA-p is used for these examples which demonstrate that our results are very relevant for existing accelerators.Comment: 10 pages, 6 figure

    Finite size effects in nonequilibrium wetting

    Full text link
    Models with a nonequilibrium wetting transition display a transition also in finite systems. This is different from nonequilibrium phase transitions into an absorbing state, where the stationary state is the absorbing one for any value of the control parameter in a finite system. In this paper, we study what kind of transition takes place in finite systems of nonequilibrium wetting models. By solving exactly a microscopic model with three and four sites and performing numerical simulations we show that the phase transition taking place in a finite system is characterized by the average interface height performing a random walk at criticality and does not discriminate between the bounded-KPZ classes and the bounded-EW class. We also study the finite size scaling of the bKPZ universality classes, showing that it presents peculiar features in comparison with other universality classes of nonequilibrium phase transitions.Comment: 14 pages, 6figures, major change

    Critical Exponent for the Density of Percolating Flux

    Full text link
    This paper is a study of some of the critical properties of a simple model for flux. The model is motivated by gauge theory and is equivalent to the Ising model in three dimensions. The phase with condensed flux is studied. This is the ordered phase of the Ising model and the high temperature, deconfined phase of the gauge theory. The flux picture will be used in this phase. Near the transition, the density is low enough so that flux variables remain useful. There is a finite density of finite flux clusters on both sides of the phase transition. In the deconfined phase, there is also an infinite, percolating network of flux with a density that vanishes as TTc+T \rightarrow T_{c}^{+}. On both sides of the critical point, the nonanalyticity in the total flux density is characterized by the exponent (1α)(1-\alpha). The main result of this paper is a calculation of the critical exponent for the percolating network. The exponent for the density of the percolating cluster is ζ=(1α)(φ1) \zeta = (1-\alpha) - (\varphi-1). The specific heat exponent α\alpha and the crossover exponent φ\varphi can be computed in the ϵ\epsilon-expansion. Since ζ<(1α)\zeta < (1-\alpha), the variation in the separate densities is much more rapid than that of the total. Flux is moving from the infinite cluster to the finite clusters much more rapidly than the total density is decreasing.Comment: 20 pages, no figures, Latex/Revtex 3, UCD-93-2

    On the finite-size behavior of systems with asymptotically large critical shift

    Full text link
    Exact results of the finite-size behavior of the susceptibility in three-dimensional mean spherical model films under Dirichlet-Dirichlet, Dirichlet-Neumann and Neumann-Neumann boundary conditions are presented. The corresponding scaling functions are explicitly derived and their asymptotics close to, above and below the bulk critical temperature TcT_c are obtained. The results can be incorporated in the framework of the finite-size scaling theory where the exponent λ\lambda characterizing the shift of the finite-size critical temperature with respect to TcT_c is smaller than 1/ν1/\nu, with ν\nu being the critical exponent of the bulk correlation length.Comment: 24 pages, late

    Gauge Theories with Cayley-Klein SO(2;j)SO(2;j) and SO(3;j)SO(3;j) Gauge Groups

    Get PDF
    Gauge theories with the orthogonal Cayley-Klein gauge groups SO(2;j)SO(2;j) and SO(3;j)SO(3;{\bf j}) are regarded. For nilpotent values of the contraction parameters j{\bf j} these groups are isomorphic to the non-semisimple Euclid, Newton, Galilei groups and corresponding matter spaces are fiber spaces with degenerate metrics. It is shown that the contracted gauge field theories describe the same set of fields and particle mass as SO(2),SO(3)SO(2), SO(3) gauge theories, if Lagrangians in the base and in the fibers all are taken into account. Such theories based on non-semisimple contracted group provide more simple field interactions as compared with the initial ones.Comment: 14 pages, 5 figure

    Descriptive account of 18 adults with known HIV infection hospitalised with SARS-CoV-2 infection

    Get PDF
    OBJECTIVE: To report on the clinical characteristics and outcome of 18 people living with HIV (PLWH) hospitalised with SARS-CoV-2 infection in a London teaching hospital. METHODS: The hospital notes of 18 PLWH hospitalised with SARS-CoV-2 infection were retrospectively reviewed alongside data concerning their HIV demographics from an established HIV Database. RESULTS: The majority (16/18) had positive PCR swabs for SARS-CoV-2, and two had negative swabs but typical COVID-19 imaging and history. Most were male (14/18, 78%), median age 63 years (range 47-77 years). Two-thirds were migrants, nine (50%) of Black, Asian and minority ethnicity (BAME). All were diagnosed with HIV for many years (range 8-31 years), and all had an undetectable HIV viral load (<40 copies/mL). The median CD4 prior to admission was 439 (IQR 239-651), and 10/16 (63%) had a CD4 nadir below 200 cells/mm3. Almost all (17/18) had been diagnosed with at least one comorbidity associated with SARS-CoV-2 prior to admission. 3/18 patients died. None received mechanical ventilation. Hospital stay and clinical course did not appear prolonged (median 9 days). CONCLUSIONS: Our data suggest that PLWH may not necessarily have prolonged or complex admissions to hospital when compared with the general hospital and national population admitted with COVID-19. Many had low nadir CD4 counts and potentially impaired functional immune restoration. The PLWH group was younger than generally reported for COVID-19, and the majority were male with multiple complex comorbidities. These patients had frequent contact with hospital settings increasing potential for nosocomial acquisition and increased risk of severe COVID-19

    Quasi-Static Brittle Fracture in Inhomogeneous Media and Iterated Conformal Maps: Modes I, II and III

    Full text link
    The method of iterated conformal maps is developed for quasi-static fracture of brittle materials, for all modes of fracture. Previous theory, that was relevant for mode III only, is extended here to mode I and II. The latter require solution of the bi-Laplace rather than the Laplace equation. For all cases we can consider quenched randomness in the brittle material itself, as well as randomness in the succession of fracture events. While mode III calls for the advance (in time) of one analytic function, mode I and II call for the advance of two analytic functions. This fundamental difference creates different stress distribution around the cracks. As a result the geometric characteristics of the cracks differ, putting mode III in a different class compared to modes I and II.Comment: submitted to PRE For a version with qualitatively better figures see: http://www.weizmann.ac.il/chemphys/ander
    corecore