83 research outputs found

    High-resolution UV spectroscopy of 1-Indanol

    Get PDF
    We report on rotationally resolved laser induced fluorescence (LIF) and vibrationally resolved resonance enhanced multiphoton ionization (REMPI) spectroscopy of the chiral molecule 1-indanol. Spectra of the S1 ← S0 electronic transition are recorded in a jet-cooled, pulsed molecular beam. Using two time-delayed pulsed lasers, the lifetime of the S1 state of the two most stable conformers, referred to as eq1 and ax2, is determined. The S1 ← S0 origin bands of these conformers as well as the transition to a vibrationally excited level in the S1 state of eq1 are recorded with full rotational resolution (25 MHz observed linewidth) by measuring the LIF intensity following excitation with a tuneable, narrowband cw laser. On selected rotationally resolved electronic transitions, Lamb-dips are measured to confirm the Lorentzian lifetime-contribution to the observed lineshapes. The rotationally resolved S1 ← S0 origin band of a Neon-complex of eq1 is measured via LIF as well. The fit of the rotationally resolved LIF spectra of the origin bands to those of an asymmetric rotor yields a standard deviation of about 6 MHz. The resulting spectroscopic parameters are tabulated and compared to the outcome of ab initio calculations. For both conformers as well as for the Ne-eq1 complex, the geometric structures in the S0 and S1 states are discussed. For all systems, the transition dipole moment is mainly along the long axis, the a-axis, the contributions along the b- and c-axes being about one order of magnitude smaller

    Cold, Chiral, Gas-Phase Molecules

    No full text

    Rotational State Control of Chiral Molecules

    No full text

    Cold, Chiral, Gas-Phase Molecules

    No full text
    corecore