6,337 research outputs found

    ScotGrid: A Prototype Tier 2 Centre

    Full text link
    ScotGrid is a prototype regional computing centre formed as a collaboration between the universities of Durham, Edinburgh and Glasgow as part of the UK's national particle physics grid, GridPP. We outline the resources available at the three core sites and our optimisation efforts for our user communities. We discuss the work which has been conducted in extending the centre to embrace new projects both from particle physics and new user communities and explain our methodology for doing this.Comment: 4 pages, 4 diagrams. Presented at Computing for High Energy and Nuclear Physics 2004 (CHEP '04). Interlaken, Switzerland, September 200

    Computational study of three dimensional viscous flow through a turbine cascade using a multi-domain spectral technique

    Get PDF
    The three dimensional viscous flow through a planar turbine cascade is numerically simulated by direct solution of the incompressible Navier-Stokes equations. Flow dependence in the spanwise direction is represented by direct expansion in Chebyshev polynomials, while the discretization on planes parallel to the endwalls is accomplished using the spectral element method. Elemental mapping from the physical to the computational space uses an algebraic mapping technique. A fractional time stepping method that consists of an explicit nonlinear convective step, an implicit pressure correction step, and an implicit viscous step is used to advance the Navier-Stokes equations forward in time. Results computed at moderate Reynolds numbers show a three dimensional endwall flow separation, a midspan separation of the blade suction surface boundary layer, and other three-dimensional features such as the presence of a saddle point flow in the endwall region. In addition, the computed skin friction lines are shown to be orthogonal to the surface vorticity lines, demonstrating the accuracy achievable in the present method

    A 2000-hour cyclic endurance test of a laboratory model multipropellant resistojet

    Get PDF
    The technological readiness of a long-life multipropellant resistojet for space station auxiliary propulsion is demonstrated. A laboratory model resistojet made from grain-stabilized platinum served as a test bed to evaluate the design characteristics, fabrication methods, and operating strategies for an engineering model multipropellant resistojet developed under contract by the Rocketdyne Division of Rockwell International and Technion Incorporated. The laboratory model thruster was subjected to a 2000-hr, 2400-thermal-cycle endurance test using carbon dioxide propellant. Maximum thruster temperatures were approximately 1400 C. The post-test analyses of the laboratory model thruster included an investigation of component microstructures. Significant observations from the laboratory model thruster are discussed as they relate to the design of the engineering model thruster

    Preliminary endurance tests of water vaporizers for resistojet applications

    Get PDF
    Three water vaporizers designed for resistojet applications were built and tested for periods up to 500 h and 250 thermal cycles. Two of the vaporizers were not sensitive to orientation with respect to gravity, an indication of likely compatibility with low-gravity environments. Some temperatures and pressures in the third were impacted by orientation, although operation was always stable. The pressure drop across the sand-filled version increased by 147 percent in 38 h and 19 thermal cycles. Bonding of the sand granules in the downstream end of the heat exchanger was the suspected cause of failure of this vaporizer. Pressure drops across the two sintered stainless steel-filled versions were more gradual. One, with a pore size of 60 microns, showed an 80 percent increase in 500 h and 250 thermal cycles and another, with a 10 microns poresize, showed a 29 percent increase in 350 h and 175 thermal cycles. Testing of the latter metal-filled vaporizer was ongoing as of this writing. Oxidation of the porous metal packing materials in these vaporizers, with subsequent deposition of oxide particles within the pores, was believed to have caused the observed increases in pressure drops

    A center for commercial development of space: Real-time satellite mapping. Remote sensing-based agricultural information expert system

    Get PDF
    The research project results in a powerful yet user friendly CROPCAST expert system for use by a client to determine the crop yield production of a certain crop field. The study is based on the facts that heuristic assessment and decision making in agriculture are significant and dominate much of agribusiness. Transfer of the expert knowledge concerning remote sensing based crop yield production into a specific expert system is the key program in this study. A knowledge base consisting of a root frame, CROP-YIELD-FORECAST, and four subframes, namely, SATELLITE, PLANT-PHYSIOLOGY, GROUND, and MODEL were developed to accommodate the production rules obtained from the domain expert. The expert system shell Personal Consultant Plus version 4.0. was used for this purpose. An external geographic program was integrated to the system. This project is the first part of a completely built expert system. The study reveals that much effort was given to the development of the rules. Such effort is inevitable if workable, efficient, and accurate rules are desired. Furthermore, abundant help statements and graphics were included. Internal and external display routines add to the visual capability of the system. The work results in a useful tool for the client for making decisions on crop yield production

    Development of data processing, interpretation and analysis system for the remote sensing of trace atmospheric gas species

    Get PDF
    The major emphasis is on the advancement of remote sensing technology. In particular, the gas filter correlation radiometer (GFCR) technique was applied to the measurement of trace gas species, such as carbon monoxide (CO), from airborne and Earth orbiting platforms. Through a series of low altitude aircraft flights, high altitude aircraft flights, and orbiting space platform flights, data were collected and analyzed, culminating in the first global map of carbon monoxide concentration in the middle troposphere and stratosphere. The four major areas of this remote sensing program, known as the Measurement of Air Pollution from Satellites (MAPS) experiment, are: (1) data acquisition, (2) data processing, analysis, and interpretation algorithms, (3) data display techniques, and (4) information processing

    Retirement or Semi-Retirement: Implications for Health…Some Food for Thought

    Get PDF
    Dr. Earl Shive, Professor Emeritus, East Stroudsburg University, reflects on his career as an educator and his experiences with the process of retirement or “semi-retirement.
    corecore