4,835 research outputs found
Accurate molecular energies by extrapolation of atomic energies using an analytic quantum mechanical model
Using a new analytic quantum mechanical method based on Slater's Xalpha
method, we show that a fairly accurate estimate of the total energy of a
molecule can be obtained from the exact energies of its constituent atoms. The
mean absolute error in the total energies thus determined for the G2 set of 56
molecules is about 16 kcal/mol, comparable to or better than some popular pure
and hybrid density functional models.Comment: 5 pages, REVTE
Methods for evaluating the performance of volume phase holographic gratings for the VIRUS spectrograph array
The Visible Integral Field Replicable Unit Spectrograph (VIRUS) is an array
of at least 150 copies of a simple, fiber-fed integral field spectrograph that
will be deployed on the Hobby-Eberly Telescope (HET) to carry out the HET Dark
Energy Experiment (HETDEX). Each spectrograph contains a volume phase
holographic grating as its dispersing element that is used in first order for
350 nm to 550 nm. We discuss the test methods used to evaluate the performance
of the prototype gratings, which have aided in modifying the fabrication
prescription for achieving the specified batch diffraction efficiency required
for HETDEX. In particular, we discuss tests in which we measure the diffraction
efficiency at the nominal grating angle of incidence in VIRUS for all orders
accessible to our test bench that are allowed by the grating equation. For
select gratings, these tests have allowed us to account for > 90% of the
incident light for wavelengths within the spectral coverage of VIRUS. The
remaining light that is unaccounted for is likely being diffracted into
reflective orders or being absorbed or scattered within the grating layer (for
bluer wavelengths especially, the latter term may dominate the others).
Finally, we discuss an apparatus that will be used to quickly verify the first
order diffraction efficiency specification for the batch of at least 150 VIRUS
production gratings.Comment: 18 pages, 11 figures. To be published in Proc. SPIE, 2012,
"Ground-Based and Airborne Instrumentation for Astronomy IV", 8446-20
Energetic disorder at the metal/organic semiconductor interface
The physics of organic semiconductors is dominated by the effects of
energetic disorder. We show that image forces reduce the electrostatic
component of the total energetic disorder near an interface with a metal
electrode. Typically, the variance of energetic disorder is dramatically
reduced at the first few layers of organic semiconductor molecules adjacent to
the metal electrode. Implications for charge injection into organic
semiconductors are discussed.Comment: 9 pages, 2 figure
Distribution of averages in a correlated Gaussian medium as a tool for the estimation of the cluster distribution on size
Calculation of the distribution of the average value of a Gaussian random
field in a finite domain is carried out for different cases. The results of the
calculation demonstrate a strong dependence of the width of the distribution on
the spatial correlations of the field. Comparison with the simulation results
for the distribution of the size of the cluster indicates that the distribution
of an average field could serve as a useful tool for the estimation of the
asymptotic behavior of the distribution of the size of the clusters for "deep"
clusters where value of the field on each site is much greater than the rms
disorder.Comment: 15 pages, 6 figures, RevTe
On the role of a new type of correlated disorder in extended electronic states in the Thue-Morse lattice
A new type of correlated disorder is shown to be responsible for the
appearance of extended electronic states in one-dimensional aperiodic systems
like the Thue-Morse lattice. Our analysis leads to an understanding of the
underlying reason for the extended states in this system, for which only
numerical evidence is available in the literature so far. The present work also
sheds light on the restrictive conditions under which the extended states are
supported by this lattice.Comment: 11 pages, LaTeX V2.09, 1 figure (available on request), to appear in
Physical Review Letter
Stability, reliability and cross-mode correlations of tests in a recommended 8-minute performance assessment battery
A need exists for an automated performance test system to study drugs, agents, treatments, and stresses of interest to the aviation, space, and environmental medical community. The purpose of this present study is to evaluate tests for inclusion in the NASA-sponsored Automated Performance Test System (APTS). Twenty-one subjects were tested over 10 replications with tests previously identified as good candidates for repeated-measure research. The tests were concurrently administered in paper-and-pencil and microcomputer modes. Performance scores for the two modes were compared. Data from trials 1 to 10 were examined for indications of test stability and reliability. Nine of the ten APT system tests achieved stability. Reliabilities were generally high. Cross-correlation of microbased tests with traditional paper-and-pencil versions revealed similarity of content within tests in the different modes, and implied at least three cognition and two motor factors. This protable, inexpensive, rugged, computerized battery of tests is recommended for use in repeated-measures studies of environmental and drug effects on performance. Identification of other tests compatible with microcomputer testing and potentially capable of tapping previously unidentified factors is recommended. Documentation of APTS sensitivity to environmental agents is available for more than a dozen facilities and is reported briefly. Continuation of such validation remains critical in establishing the efficacy of APTS tests
Οutcomes for patients who are diagnosed with breast and endometrial cancer
The present study sought to determine the survival outcomes for women diagnosed with breast and endometrial cancer. Using SEER data, a population-based cohort study of women diagnosed with breast and endometrial cancer was conducted. Kaplan-Meier survival curves were created for disease-specific survival rates. A total of 2,027 women diagnosed with breast and endometrial cancer were identified. Of these, 1,296 (63.9%) developed breast cancer first and 731 (36.1%) developed endometrial cancer first. Regional lymph node involvement was significantly more common with a breast cancer diagnosis [522 (25.8%) women] compared with an endometrial cancer diagnosis [87 (4.3%) women] (P<0.05). Factors associated with decreased survival included a high tumor grade in endometrial cancer, nodal positivity and estrogen receptor-negative breast cancer (P<0.05 for each). There were 83 (4.1%) mortalities due to breast cancer, 63 (3.1%) mortalities due to endometrial cancer and 178 (8.8%) mortalities due to other causes (P<0.05). In conclusion, for women diagnosed with breast and endometrial cancer, the cumulative risk of mortality at five years following the second cancer diagnosis is nearly four times more likely to be due to breast cancer than endometrial cancer
Fourier analyses of commensurability oscillations in Fibonacci lateral superlattices
Magnetotransport measurements have been performed on Fibonacci lateral
superlattices (FLSLs) -- two-dimensional electron gases subjected to a weak
potential modulation arranged in the Fibonacci sequence, LSLLSLS..., with
L/S=tau (the golden ratio). Complicated commensurability oscillation (CO) is
observed, which can be accounted for as a superposition of a series of COs each
arising from a sinusoidal modulation representing the characteristic length
scale of one of the self-similar generations in the Fibonacci sequence.
Individual CO components can be separated out from the magnetoresistance trace
by performing a numerical Fourier band-pass filter. From the analysis of the
amplitude of a single-component CO thus extracted, the magnitude of the
corresponding Fourier component in the potential modulation can be evaluated.
By examining all the Fourier contents observed in the magnetoresistance trace,
the profile of the modulated potential seen by the electrons can be
reconstructed with some remaining ambiguity about the interrelation of the
phase between different components.Comment: 11 pages, 10 figures, added references in Introduction, minor
revision
Zener transitions between dissipative Bloch bands. II: Current Response at Finite Temperature
We extend, to include the effects of finite temperature, our earlier study of
the interband dynamics of electrons with Markoffian dephasing under the
influence of uniform static electric fields. We use a simple two-band
tight-binding model and study the electric current response as a function of
field strength and the model parameters. In addition to the Esaki-Tsu peak,
near where the Bloch frequency equals the damping rate, we find current peaks
near the Zener resonances, at equally spaced values of the inverse electric
field. These become more prominenent and numerous with increasing bandwidth (in
units of the temperature, with other parameters fixed). As expected, they
broaden with increasing damping (dephasing).Comment: 5 pages, LateX, plus 5 postscript figure
- …
