332 research outputs found

    New Developments in MadGraph/MadEvent

    Full text link
    We here present some recent developments of MadGraph/MadEvent since the latest published version, 4.0. These developments include: Jet matching with Pythia parton showers for both Standard Model and Beyond the Standard Model processes, decay chain functionality, decay width calculation and decay simulation, process generation for the Grid, a package for calculation of quarkonium amplitudes, calculation of Matrix Element weights for experimental events, automatic dipole subtraction for next-to-leading order calculations, and an interface to FeynRules, a package for automatic calculation of Feynman rules and model files from the Lagrangian of any New Physics model.Comment: 6 pages, 3 figures. Plenary talk given at SUSY08, Seoul, South Korea, June 2008. To appear in the proceeding

    Probing the scalar potential via double Higgs boson production at hadron colliders

    Get PDF
    We present a sensitivity study on the cubic and quartic self couplings in double Higgs production via gluon fusion at hadron colliders. Considering the relevant operators in the Standard Model Effective Field Theory up to dimension eight, we calculate the dominant contributions up to two-loop level, where the first dependence on the quartic interaction appears. Our approach allows to study the independent variations of the two self couplings and to clearly identify the terms necessary to satisfy gauge invariance and to obtain UV-finite results order by order in perturbation theory. We focus on the bb¯ γγ signature for simplicity and provide the expected bounds for the cubic and quartic self couplings at the 14 TeV LHC with 3000 fb −1 (HL-LHC) and for a future 100 TeV collider (FCC-100) with 30 ab −1 . We find that while the HL-LHC will provide very limited sensitivity on the quartic self coupling, precision measurements of double Higgs production at a FCC-100 will offer the opportunity to set competitive bounds. We show that combining information from double and triple Higgs production leads to significantly improved prospects for the determination of the quartic self coupling

    NNLO phase space master integrals for two-to-one inclusive cross sections in dimensional regularization

    Full text link
    We evaluate all phase space master integrals which are required for the total cross section of generic 2 -> 1 processes at NNLO as a series expansion in the dimensional regulator epsilon. Away from the limit of threshold production, our expansion includes one order higher than what has been available in the literature. At threshold, we provide expressions which are valid to all orders in terms of Gamma functions and hypergeometric functions. These results are a necessary ingredient for the renormalization and mass factorization of singularities in 2 -> 1 inclusive cross sections at NNNLO in QCD.Comment: 37 pages, plus 3 ancillary files containing analytic expressions in Maple forma

    Multi-gluon helicity amplitudes with one off-shell leg within high energy factorization

    Get PDF
    Basing on the Slavnov-Taylor identities, we derive a new prescription to obtain gauge invariant tree-level scattering amplitudes for the process g*g->Ng within high energy factorization. Using the helicity method, we check the formalism up to several final state gluons, and we present analytical formulas for the the helicity amplitudes for N=2. We also compare the method with Lipatov's effective action approach.Comment: 25 pages, quite a few figures, an appendix added, typos correcte

    Three-loop corrections to the soft anomalous dimension in multi-leg scattering

    Get PDF
    We present the three-loop result for the soft anomalous dimension governing long-distance singularities of multi-leg gauge-theory scattering amplitudes of massless partons. We compute all contributing webs involving semi-infinite Wilson lines at three loops and obtain the complete three-loop correction to the dipole formula. We find that non-dipole corrections appear already for three coloured partons, where the correction is a constant without kinematic dependence. Kinematic dependence appears only through conformally-invariant cross ratios for four coloured partons or more, and the result can be expressed in terms of single-valued harmonic polylogarithms of weight five. While the non-dipole three-loop term does not vanish in two-particle collinear limits, its contribution to the splitting amplitude anomalous dimension reduces to a constant, and it only depends on the colour charges of the collinear pair, thereby preserving strict collinear factorization properties. Finally we verify that our result is consistent with expectations from the Regge limit.Comment: v2: remaining diagrams computed; colour conservation accounted for; strict collinear factorization shown to hold. Some references added. 6 pages, 2 figure

    Thermophoretic melting curves quantify the conformation and stability of RNA and DNA

    Get PDF
    Measuring parameters such as stability and conformation of biomolecules, especially of nucleic acids, is important in the field of biology, medical diagnostics and biotechnology. We present a thermophoretic method to analyse the conformation and thermal stability of nucleic acids. It relies on the directed movement of molecules in a temperature gradient that depends on surface characteristics of the molecule, such as size, charge and hydrophobicity. By measuring thermophoresis of nucleic acids over temperature, we find clear melting transitions and resolve intermediate conformational states. These intermediate states are indicated by an additional peak in the thermophoretic signal preceding most melting transitions. We analysed single nucleotide polymorphisms, DNA modifications, conformational states of DNA hairpins and microRNA duplexes. The method is validated successfully against calculated melting temperatures and UV absorbance measurements. Interestingly, the methylation of DNA is detected by the thermophoretic amplitude even if it does not affect the melting temperature. In the described setup, thermophoresis is measured all-optical in a simple setup using a reproducible capillary format with only 250 nl probe consumption. The thermophoretic analysis of nucleic acids shows the technique’s versatility for the investigation of nucleic acids relevant in cellular processes like RNA interference or gene silencing

    Single-valued harmonic polylogarithms and the multi-Regge limit

    Get PDF
    We argue that the natural functions for describing the multi-Regge limit of six-gluon scattering in planar N=4 super Yang-Mills theory are the single-valued harmonic polylogarithmic functions introduced by Brown. These functions depend on a single complex variable and its conjugate, (w,w*). Using these functions, and formulas due to Fadin, Lipatov and Prygarin, we determine the six-gluon MHV remainder function in the leading-logarithmic approximation (LLA) in this limit through ten loops, and the next-to-LLA (NLLA) terms through nine loops. In separate work, we have determined the symbol of the four-loop remainder function for general kinematics, up to 113 constants. Taking its multi-Regge limit and matching to our four-loop LLA and NLLA results, we fix all but one of the constants that survive in this limit. The multi-Regge limit factorizes in the variables (\nu,n) which are related to (w,w*) by a Fourier-Mellin transform. We can transform the single-valued harmonic polylogarithms to functions of (\nu,n) that incorporate harmonic sums, systematically through transcendental weight six. Combining this information with the four-loop results, we determine the eigenvalues of the BFKL kernel in the adjoint representation to NNLLA accuracy, and the MHV product of impact factors to NNNLLA accuracy, up to constants representing beyond-the-symbol terms and the one symbol-level constant. Remarkably, only derivatives of the polygamma function enter these results. Finally, the LLA approximation to the six-gluon NMHV amplitude is evaluated through ten loops.Comment: 71 pages, 2 figures, plus 10 ancillary files containing analytic expressions in Mathematica format. V2: Typos corrected and references added. V3: Typos corrected; assumption about single-Reggeon exchange made explici

    Light gravitino production in association with gluinos at the LHC

    Full text link
    We study the jets plus missing energy signature at the LHC in a scenario where the gravitino is very light and the gluino is the next-to-lightest supersymmetric particle and promptly decays into a gluon and a gravitino. We consider both associated gravitino production with a gluino and gluino pair production. By merging matrix elements with parton showers, we generate inclusive signal and background samples and show how information on the gluino and gravitino masses can be obtained by simple final state observables.Comment: 18 pages, 8 figures, 1 table; v2: typos corrected, version to appear in JHE

    Convection in colloidal suspensions with particle-concentration-dependent viscosity

    Full text link
    The onset of thermal convection in a horizontal layer of a colloidal suspension is investigated in terms of a continuum model for binary-fluid mixtures where the viscosity depends on the local concentration of colloidal particles. With an increasing difference between the viscosity at the warmer and the colder boundary the threshold of convection is reduced in the range of positive values of the separation ratio psi with the onset of stationary convection as well as in the range of negative values of psi with an oscillatory Hopf bifurcation. Additionally the convection rolls are shifted downwards with respect to the center of the horizontal layer for stationary convection (psi>0) and upwards for the Hopf bifurcation (psi<0).Comment: 8 pages, 6 figures, submitted to European Physical Journal
    corecore