29 research outputs found

    Geometrical locus of massive test particle orbits in the space of physical parameters in Kerr space-time

    Full text link
    Gravitational radiation of binary systems can be studied by using the adiabatic approximation in General Relativity. In this approach a small astrophysical object follows a trajectory consisting of a chained series of bounded geodesics (orbits) in the outer region of a Kerr Black Hole, representing the space time created by a bigger object. In our paper we study the entire class of orbits, both of constant radius (spherical orbits), as well as non-null eccentricity orbits, showing a number of properties on the physical parameters and trajectories. The main result is the determination of the geometrical locus of all the orbits in the space of physical parameters in Kerr space-time. This becomes a powerful tool to know if different orbits can be connected by a continuous change of their physical parameters. A discussion on the influence of different values of the angular momentum of the hole is given. Main results have been obtained by analytical methods.Comment: 26 pages, 12 figure

    Forced motion near black holes

    Get PDF
    We present two methods for integrating forced geodesic equations in the Kerr spacetime, which can accommodate arbitrary forces. As a test case, we compute inspirals under a simple drag force, mimicking the presence of gas. We verify that both methods give the same results for this simple force. We find that drag generally causes eccentricity to increase throughout the inspiral. This is a relativistic effect qualitatively opposite to what is seen in gravitational-radiation-driven inspirals, and similar to what is observed in hydrodynamic simulations of gaseous binaries. We provide an analytic explanation by deriving the leading order relativistic correction to the Newtonian dynamics. If observed, an increasing eccentricity would provide clear evidence that the inspiral was occurring in a non-vacuum environment. Our two methods are especially useful for evolving orbits in the adiabatic regime. Both use the method of osculating orbits, in which each point on the orbit is characterized by the parameters of the geodesic with the same instantaneous position and velocity. Both methods describe the orbit in terms of the geodesic energy, axial angular momentum, Carter constant, azimuthal phase, and two angular variables that increase monotonically and are relativistic generalizations of the eccentric anomaly. The two methods differ in their treatment of the orbital phases and the representation of the force. In one method the geodesic phase and phase constant are evolved together as a single orbital phase parameter, and the force is expressed in terms of its components on the Kinnersley orthonormal tetrad. In the second method, the phase constants of the geodesic motion are evolved separately and the force is expressed in terms of its Boyer-Lindquist components. This second approach is a generalization of earlier work by Pound and Poisson for planar forces in a Schwarzschild background.Comment: 28 pages, 2 figures, submitted to Phys. Rev. D; v2 has minor changes for consistency with published version, plus a new section discussing the relative advantages of the two approache

    Core-Collapse Supernovae, Neutrinos, and Gravitational Waves

    Get PDF
    Core-collapse supernovae are among the most energetic cosmic cataclysms. They are prodigious emitters of neutrinos and quite likely strong galactic sources of gravitational waves. Observation of both neutrinos and gravitational waves from the next galactic or near extragalactic core-collapse supernova will yield a wealth of information on the explosion mechanism, but also on the structure and angular momentum of the progenitor star, and on aspects of fundamental physics such as the equation of state of nuclear matter at high densities and low entropies. In this contribution to the proceedings of the Neutrino 2012 conference, we summarize recent progress made in the theoretical understanding and modeling of core-collapse supernovae. In this, our emphasis is on multi-dimensional processes involved in the explosion mechanism such as neutrino-driven convection and the standing accretion shock instability. As an example of how supernova neutrinos can be used to probe fundamental physics, we discuss how the rise time of the electron antineutrino flux observed in detectors can be used to probe the neutrino mass hierarchy. Finally, we lay out aspects of the neutrino and gravitational-wave signature of core-collapse supernovae and discuss the power of combined analysis of neutrino and gravitational wave data from the next galactic core-collapse supernova

    Gravitational wave snapshots of generic extreme mass ratio inspirals

    Full text link
    Using black hole perturbation theory, we calculate the gravitational waves produced by test particles moving on bound geodesic orbits about rotating black holes. The orbits we consider are generic - simultaneously eccentric and inclined. The waves can be described as having radial, polar, and azimuthal "voices", each of which can be made to dominate by varying eccentricity and inclination. Although each voice is generally apparent in the waveform, the radial voice is prone to overpowering the others. We also compute the radiative fluxes of energy and axial angular momentum at infinity and through the event horizon. These fluxes, coupled to a prescription for the radiative evolution of the Carter constant, will be used in future work to adiabatically evolve through a sequence of generic orbits. This will enable the calculation of inspiral waveforms that, while lacking certain important features, will approximate those expected from astrophysical extreme mass ratio captures sufficiently well to aid development of measurement algorithms on a relatively short timescale.Comment: Minor changes in response to comments from readers, referees, and editors. Final version, as it will appear in Physical Review D. Raw data and a small program which will convert the data into waveforms lasting for arbitrary lengths of time can be found at http://gmunu.mit.edu/sdrasco/snapshot

    Geodesic equations and algebro-geometric methods

    Full text link
    For an investigation of the physical properties of gravitational fields the observation of massive test particles and light is very useful. The characteristic features of a given space-time may be decoded by studying the complete set of all possible geodesic motions. Such a thorough analysis can be accomplished most effectively by using analytical methods to solve the geodesic equation. In this contribution, the use of elliptic functions and their generalizations for solving the geodesic equation in a wide range of well known space-times, which are part of the general Pleba\'nski-Demia\'nski family of solutions, will be presented. In addition, the definition and calculation of observable effects like the perihelion shift will be presented and further applications of the presented methods will be outlined.Comment: 8 pages, no figures; based on presentation at the conference "Relativity and Gravitation: 100 Years after Einstein in Prague," Prague, 2012. Relativity and Gravitation, volume 157 of Springer Proceedings in Physics, p 91. Springer International Publishing, 201

    Lense-Thirring Precession in Pleba\'nski-Demia\'nski spacetimes

    Full text link
    An exact expression of Lense-Thirring precession rate is derived for non-extremal and extremal Pleba\'nski-Demia\'nski spacetimes. This formula is used to find the exact Lense-Thirring precession rate in various axisymmetric spacetimes, like: Kerr, Kerr-Newman, Kerr-de Sitter etc. We also show, if the Kerr parameter vanishes in Pleba\'nski-Demia\'nski(PD) spacetime, the Lense-Thirring precession does not vanish due to the existence of NUT charge. To derive the LT precession rate in extremal Pleba\'nski-Demia\'nski we first derive the general extremal condition for PD spacetimes. This general result could be applied to get the extremal limit in any stationary and axisymmetric spacetimes.Comment: 9 pages, Some special modifications are mad

    Extreme Mass Ratio Inspirals: LISA's unique probe of black hole gravity

    Full text link
    In this review article I attempt to summarise past and present-ongoing-work on the problem of the inspiral of a small body in the gravitational field of a much more massive Kerr black hole. Such extreme mass ratio systems, expected to occur in galactic nuclei, will constitute prime sources of gravitational radiation for the future LISA gravitational radiation detector. The article's main goal is to provide a survey of basic celestial mechanics in Kerr spacetime and calculations of gravitational waveforms and backreaction on the small body's orbital motion, based on the traditional `flux-balance' method and the Teukolsky black hole perturbation formalism.Comment: Invited review article, 45 pages, 23 figure

    Correlated Gravitational Wave and Neutrino Signals from General-Relativistic Rapidly Rotating Iron Core Collapse

    Get PDF
    We present results from a new set of 3D general-relativistic hydrodynamic simulations of rotating iron core collapse. We assume octant symmetry and focus on axisymmetric collapse, bounce, the early postbounce evolution, and the associated gravitational wave (GW) and neutrino signals. We employ a finite-temperature nuclear equation of state, parameterized electron capture in the collapse phase, and a multi-species neutrino leakage scheme after bounce. The latter captures the important effects of deleptonization, neutrino cooling and heating and enables approximate predictions for the neutrino luminosities in the early evolution after core bounce. We consider 12-solar-mass and 40-solar-mass presupernova models and systematically study the effects of (i) rotation, (ii) progenitor structure, and (iii) postbounce neutrino leakage on dynamics, GW, and, neutrino signals. We demonstrate, that the GW signal of rapidly rotating core collapse is practically independent of progenitor mass and precollapse structure. Moreover, we show that the effects of neutrino leakage on the GW signal are strong only in nonrotating or slowly rotating models in which GW emission is not dominated by inner core dynamics. In rapidly rotating cores, core bounce of the centrifugally-deformed inner core excites the fundamental quadrupole pulsation mode of the nascent protoneutron star. The ensuing global oscillations (f~700-800 Hz) lead to pronounced oscillations in the GW signal and correlated strong variations in the rising luminosities of antineutrino and heavy-lepton neutrinos. We find these features in cores that collapse to protoneutron stars with spin periods <~ 2.5 ms and rotational energies sufficient to drive hyper-energetic core-collapse supernova explosions. Hence, joint GW + neutrino observations of a core collapse event could deliver strong evidence for or against rapid core rotation. [abridged]Comment: 29 pages, 14 figures. Replaced with version matching published versio

    A nonlinear scalar model of extreme mass ratio inspirals in effective field theory I. Self force through third order

    Full text link
    The motion of a small compact object in a background spacetime is investigated in the context of a model nonlinear scalar field theory. This model is constructed to have a perturbative structure analogous to the General Relativistic description of extreme mass ratio inspirals (EMRIs). We apply the effective field theory approach to this model and calculate the finite part of the self force on the small compact object through third order in the ratio of the size of the compact object to the curvature scale of the background (e.g., black hole) spacetime. We use well-known renormalization methods and demonstrate the consistency of the formalism in rendering the self force finite at higher orders within a point particle prescription for the small compact object. This nonlinear scalar model should be useful for studying various aspects of higher-order self force effects in EMRIs but within a comparatively simpler context than the full gravitational case. These aspects include developing practical schemes for higher order self force numerical computations, quantifying the effects of transient resonances on EMRI waveforms and accurately modeling the small compact object's motion for precise determinations of the parameters of detected EMRI sources.Comment: 30 pages, 8 figure
    corecore