583 research outputs found

    N=2 Rigid Supersymmetry with Gauged Central Charge

    Get PDF
    We develop a general setting for N=2 rigid supersymmetric field theories with gauged central charge in harmonic superspace. We consider those N=2 multiplets which have a finite number of off-shell components and exist off shell owing to a non-trivial central charge. This class includes, in particular, the hypermultiplet with central charge and various versions of the vector-tensor multiplet. For such theories we present a manifestly supersymmetric universal action. Chern-Simons couplings to an external N=2 super Yang-Mills multiplet are given, in harmonic superspace, for both the linear and nonlinear vector-tensor multiplets with gauged central charge. We show how to deduce the linear version of the vector-tensor multiplet from six dimensions.Comment: 46 pages, latex, no figure

    Superform formulation for vector-tensor multiplets in conformal supergravity

    Full text link
    The recent papers arXiv:1110.0971 and arXiv:1201.5431 have provided a superfield description for vector-tensor multiplets and their Chern-Simons couplings in 4D N = 2 conformal supergravity. Here we develop a superform formulation for these theories. Furthermore an alternative means of gauging the central charge is given, making use of a deformed vector multiplet, which may be thought of as a variant vector-tensor multiplet. Its Chern-Simons couplings to additional vector multiplets are also constructed. This multiplet together with its Chern-Simons couplings are new results not considered by de Wit et al. in hep-th/9710212.Comment: 28 pages. V2: Typos corrected and references updated; V3: References updated and typo correcte

    Perturbative Gravity in the Causal Approach

    Full text link
    Quantum theory of the gravitation in the causal approach is studied up to the second order of perturbation theory. We prove gauge invariance and renormalizability in the second order of perturbation theory for the pure gravity system (massless and massive). Then we investigate the interaction of massless gravity with matter (described by scalars and spinors) and massless Yang-Mills fields. We obtain a difference with respect to the classical field theory due to the fact that in quantum field theory one cannot enforce the divergenceless property on the vector potential and this spoils the divergenceless property of the usual energy-momentum tensor. To correct this one needs a supplementary ghost term in the interaction Lagrangian.Comment: 50 pages, no figures, some changes in the last sectio

    The linear multiplet and ectoplasm

    Full text link
    In the framework of the superconformal tensor calculus for 4D N=2 supergravity, locally supersymmetric actions are often constructed using the linear multiplet. We provide a superform formulation for the linear multiplet and derive the corresponding action functional using the ectoplasm method (also known as the superform approach to the construction of supersymmetric invariants). We propose a new locally supersymmetric action which makes use of a deformed linear multiplet. The novel feature of this multiplet is that it corresponds to the case of a gauged central charge using a one-form potential not annihilated by the central charge (unlike the standard N=2 vector multiplet). Such a gauge one-form can be chosen to describe a variant nonlinear vector-tensor multiplet. As a byproduct of our construction, we also find a variant realization of the tensor multiplet in supergravity where one of the auxiliaries is replaced by the field strength of a gauge three-form.Comment: 31 pages; v3: minor corrections and typos fixed, version to appear in JHE

    Effect of egg turning and incubation time on carbonic anhydrase gene expression in the blastoderm of the Japanese quail (Coturnix c. japonica)

    Get PDF
    (1) The gene expression of carbonic anhydrase, a key enzyme for the production sub-embryonic fluid (SEF), was assessed in turned and unturned eggs of the Japanese quail. The plasma membrane-associated isoforms CA IV, CAIX, CA XII, CA XIV, and the cytoplasmic isoform CA II, were investigated in the extra-embryonic tissue of the blastoderm and in embryonic blood. (2) Eggs were incubated at 37.6C, c. 60% R.H., and turned hourly (90 ) or left unturned. From 48 to 96 hours of incubation mRNA was extracted from blastoderm tissue, reverse-transcribed to cDNA and quantified by real-time qPCR using gene-specific primers. Blood collected at 96h was processed identically. (3) Blastoderm CAIV gene expression increased with the period of incubation only in turned eggs, with maxima at 84 and 96h of incubation. Only very low levels were found in blood. (4) Blastoderm CA II gene expression was greatest at 48 and 54h of incubation, subsequently declining to much lower levels and una ected by turning. Blood CA II gene expression was about 25-fold greater than that in the blastoderm. (5) The expression of CA IX in the blastoderm was the highest of all isoforms, yet unaffected by turning. CA XII did not amplify and CA XIV was present at unquantifiable low levels. (6) It is concluded that solely gene expression for CA IV is sensitive to egg turning, and that increased CA IV gene expression could account for the additional SEF mass found at 84-96h of incubation. in embryos of turned eggs

    (4,4) superfield supergravity

    Full text link
    We present the N=4 superspace constraints for the two-dimensional (2d) off-shell (4,4) supergravity with the superfield strengths expressed in terms of a (4,4) twisted (scalar) multiplet TM-I, as well as the corresponding component results, in a form suitable for applications. The constraints are shown to be invariant under the N=4 super-Weyl transformations, whose N=4 superfield parameters form another twisted (scalar) multiplet TM-II. To solve the constraints, we propose the Ansatz which makes the N=4 superconformal flatness of the N=4 supergravity curved superspace manifest. The locally (4,4) supersymmetric TM-I matter couplings, with the potential terms resulting from spontaneous supersymmetry breaking, are constructed. We also find the full (4,4) superconformally invariant (improved) TM-II matter action. The latter can be extended to the (4,4) locally supersymmetric Liouville action which is suitable for describing (4,4) supersymmetric non-critical strings.Comment: 32 pages, LaTeX, revised version (one reference added, and one Appendix is reduced

    Supergravity for Effective Theories

    Full text link
    Higher-derivative operators are central elements of any effective field theory. In supersymmetric theories, these operators include terms with derivatives in the K\"ahler potential. We develop a toolkit for coupling such supersymmetric effective field theories to supergravity. We explain how to write the action for minimal supergravity coupled to chiral superfields with arbitrary numbers of derivatives and curvature couplings. We discuss two examples in detail, showing how the component actions agree with the expectations from the linearized description in terms of a Ferrara-Zumino multiplet. In a companion paper, we apply the formalism to the effective theory of inflation.Comment: 26 page
    corecore