48 research outputs found

    Inhibitor of Kappa B Epsilon (IκBε) Is a Non-Redundant Regulator of c-Rel-Dependent Gene Expression in Murine T and B Cells

    Get PDF
    Inhibitors of kappa B (IκBs) -α, -β and -ε effect selective regulation of specific nuclear factor of kappa B (NF-κB) dimers according to cell lineage, differentiation state or stimulus, in a manner that is not yet precisely defined. Lymphocyte antigen receptor ligation leads to degradation of all three IκBs but activation only of subsets of NF-κB-dependent genes, including those regulated by c-Rel, such as anti-apoptotic CD40 and BAFF-R on B cells, and interleukin-2 (IL-2) in T cells. We report that pre-culture of a mouse T cell line with tumour necrosis factor-α (TNF) inhibits IL-2 gene expression at the level of transcription through suppressive effects on NF-κB, AP-1 and NFAT transcription factor expression and function. Selective upregulation of IκBε and suppressed nuclear translocation of c-Rel were very marked in TNF-treated, compared to control cells, whether activated via T cell receptor (TCR) pathway or TNF receptor. IκBε associated with newly synthesised c-Rel in activated cells and, in contrast to IκBα and -β, showed enhanced association with p65/c-Rel in TNF-treated cells relative to controls. Studies in IκBε-deficient mice revealed that basal nuclear expression and nuclear translocation of c-Rel at early time-points of receptor ligation were higher in IκBε−/− T and B cells, compared to wild-type. IκBε−/− mice exhibited increased lymph node cellularity and enhanced basal thymidine incorporation by lymphoid cells ex vivo. IκBε−/− T cell blasts were primed for IL-2 expression, relative to wild-type. IκBε−/− splenic B cells showed enhanced survival ex vivo, compared to wild-type, and survival correlated with basal expression of CD40 and induced expression of CD40 and BAFF-R. Enhanced basal nuclear translocation of c-Rel, and upregulation of BAFF-R and CD40 occurred despite increased IκBα expression in IκBε−/− B cells. The data imply that regulation of these c-Rel-dependent lymphoid responses is a non-redundant function of IκBε

    Innovating together for just and green urban transitions: Stories from Urban ReLeaf Cities

    Get PDF
    Nature-based solutions in urban environments can provide cooling effects, decrease air pollution, and improve mental health, amongst others important ecosystem services and health-related benefits. Ambitious plans, such as the pledge to plant 3 billion trees in the EU, the European Green Deal, or the Green City Accord support this direction. Their implementation, however, requires transformative changes on the ground to overcome business as usual approaches. The Urban ReLeaf project delivers change by bringing public authorities and citizen groups together to shape green infrastructure actions in their cities. Six pilot cities co-create citizen-centric innovations for the democratisation of urban greenspace monitoring and the wider policy making process in pursuit of urban climate resilience. This poster showcases the stories of the six cities and their approaches to participatory, and data-driven decision making. Athens is undergoing a greening transformation with a new, citizen-powered tree registry providing critical data for better management of greenspaces. Cascais engages citizens in sharing perceptions and thermal comfort levels while using greenspaces to validate the effectiveness of its parks. Meanwhile in Dundee, a city facing increasing grey infrastructure in deprived areas, actions to enhance the accessibility of greenspaces are co-developed with citizens and stakeholders. Mannheim has a heat action plan to safeguard its most vulnerable residents but has identified critical data gaps. Citizen observations of trees and thermal comfort, when integrated with official data streams, will aid the delivery of climate adaptation measures. Riga engages diverse audiences to address concerns about air pollution and greenspace usage, to ensure better informed policies. Finally, in Utrecht, data on temperature, humidity and heat stress, collected by and for citizens, will help them reduce the urban heat island effect and shape effective mitigation strategies

    Genetics of photoreceptor degeneration and regeneration in zebrafish

    Get PDF
    Zebrafish are unique in that they provide a useful model system for studying two critically important problems in retinal neurobiology, the mechanisms responsible for triggering photoreceptor cell death and the innate stem cell–mediated regenerative response elicited by this death. In this review we highlight recent seminal findings in these two fields. We first focus on zebrafish as a model for studying photoreceptor degeneration. We summarize the genes currently known to cause photoreceptor degeneration, and we describe the phenotype of a few zebrafish mutants in detail, highlighting the usefulness of this model for studying this process. In the second section, we discuss the several different experimental paradigms that are available to study regeneration in the teleost retina. A model outlining the sequence of gene expression starting from the dedifferentiation of Müller glia to the formation of rod and cone precursors is presented

    The Role of Mislocalized Phototransduction in Photoreceptor Cell Death of Retinitis Pigmentosa

    Get PDF
    Most of inherited retinal diseases such as retinitis pigmentosa (RP) cause photoreceptor cell death resulting in blindness. RP is a large family of diseases in which the photoreceptor cell death can be caused by a number of pathways. Among them, light exposure has been reported to induce photoreceptor cell death. However, the detailed mechanism by which photoreceptor cell death is caused by light exposure is unclear. In this study, we have shown that even a mild light exposure can induce ectopic phototransduction and result in the acceleration of rod photoreceptor cell death in some vertebrate models. In ovl, a zebrafish model of outer segment deficiency, photoreceptor cell death is associated with light exposure. The ovl larvae show ectopic accumulation of rhodopsin and knockdown of ectopic rhodopsin and transducin rescue rod photoreceptor cell death. However, knockdown of phosphodiesterase, the enzyme that mediates the next step of phototransduction, does not. So, ectopic phototransduction activated by light exposure, which leads to rod photoreceptor cell death, is through the action of transducin. Furthermore, we have demonstrated that forced activation of adenylyl cyclase in the inner segment leads to rod photoreceptor cell death. For further confirmation, we have also generated a transgenic fish which possesses a human rhodopsin mutation, Q344X. This fish and rd10 model mice show photoreceptor cell death caused by adenylyl cyclase. In short, our study indicates that in some RP, adenylyl cyclase is involved in photoreceptor cell death pathway; its inhibition is potentially a logical approach for a novel RP therapy
    corecore