9,056 research outputs found
On the nature of the magnetic ground-state wave function of V_2O_3
After a brief historical introduction, we dwell on two recent experiments in
the low-temperature, monoclinic phase of V_2O_3: K-edge resonant x-ray
scattering and non-reciprocal linear dichroism, whose interpretations are in
conflict, as they require incompatible magnetic space groups. Such a conflict
is critically reviewed, in the light of the present literature, and new
experimental tests are suggested, in order to determine unambiguously the
magnetic group. We then focus on the correlated, non-local nature of the
ground-state wave function, that is at the basis of some drawbacks of the LDA+U
approach: we singled out the physical mechanism that makes LDA+U unreliable,
and indicate the way out for a possible remedy. Finally we explain, by means of
a symmetry argument related to the molecular wave function, why the magnetic
moment lies in the glide plane, even in the absence of any local symmetry at
vanadium sites.Comment: 7 pages, 1 figur
The implications of resonant x-ray scattering data on the physics of the insulating phase of V_2O_3
We have performed a quantitative analysis of recent resonant x-ray scattering
experiments carried out in the antiferromagnetic phase of V_2O_3 by means of
numerical ab-initio simulations. In order to treat magnetic effects, we have
developed a method based on multiple scattering theory (MST) and a relativistic
extension of the Schr\"{o}dinger Equation, thereby working with the usual non
relativistic set of quantum numbers for angular and spin momenta.
Electric dipole-dipole (E1-E1), dipole-quadrupole (E1-E2) and
quadrupole-quadrupole (E2-E2) transition were considered altogether. We obtain
satisfactory agreement with experiments, both in energy and azimuthal scans.
All the main features of the V K edge Bragg-forbidden reflections with
odd can be interpreted in terms of the antiferromagnetic ordering only,
{\it ie}, they are of magnetic origin. In particular the ab-initio simulation
of the energy scan around the (1,1,1)-monoclinic reflection excludes the
possibility of any symmetry reduction due to a time-reversal breaking induced
by orbital ordering.Comment: 11 pages, 6 figure
Orbital currents, anapoles, and magnetic quadrupoles in CuO
We show that orbital currents in a CuO2 plane, if present, should be
described by two independent parity and time-reversal odd order parameters, a
toroidal dipole (anapole) and a magnetic quadrupole. Based on this, we derive
the resonant X-ray diffraction cross-section for monoclinic CuO at the
antiferromagnetic wavevector and show that the two order parameters can be
disentangled. From our analysis, we examine a recent claim of detecting
anapoles in CuO.Comment: 7 pages, 5 figure
The magnetic ground state of Sr2IrO4 and implications for second-harmonic generation
The currently accepted magnetic ground state of Sr2IrO4 (the -++- state)
preserves inversion symmetry. This is at odds, though, with recent experiments
that indicate a magnetoelectric ground state, leading to the speculation that
orbital currents or more exotic magnetic multipoles might exist in this
material. Here, we analyze various magnetic configurations and demonstrate that
two of them, the magnetoelectric -+-+ state and the non-magnetoelectric ++++
state, can explain these recent second-harmonic generation (SHG) experiments,
obviating the need to invoke orbital currents. The SHG-probed magnetic order
parameter has the symmetry of a parity-breaking multipole in the -+-+ state and
of a parity-preserving multipole in the ++++ state. We speculate that either
might have been created by the laser pump used in the experiments. An
alternative is that the observed magnetic SHG signal is a surface effect. We
suggest experiments that could be performed to test these various
possibilities, and also address the important issue of the suppression of the
RXS intensity at the L2 edge.Comment: 28 pages, 8 figures, v3 - an expanded discussion of the origin of the
SHG signa
Galactic Centre stellar winds and Sgr A* accretion
(ABRIDGED) We present in detail our new 3D numerical models for the accretion
of stellar winds on to Sgr A*. In our most sophisticated models, we put stars
on realistic orbits around Sgr A*, include `slow' winds (300 km/s), and account
for radiative cooling. We first model only one phase `fast' stellar winds (1000
km/s). For wind sources fixed in space, the accretion rate is Mdot ~ 1e-5
Msun/yr, fluctuates by < 10%, and is in a good agreement with previous models.
In contrast, Mdot decreases by an order of magnitude for stars following
circular orbits, and fluctuates by ~ 50%. Then we allow a fraction of stars to
produce slow winds. Much of these winds cool radiatively, forming cold clumps
immersed into the X-ray emitting gas. We test two orbital configurations for
the stars in this scenario, an isotropic distribution and two rotating discs
with perpendicular orientation. The morphology of cold gas is quite sensitive
to the orbits. In both cases, however, most of the accreted gas is hot, with an
almost constant Mdot ~ 3e-6 Msun/yr, consistent with Chandra observations. The
cold gas accretes in intermittent, short but powerful episodes which may give
rise to large amplitude variability in the luminosity of Sgr A* on time scales
of 10s to 100s of years. The circularisation radii for the flows are ~ 1e3 and
1e4 Rsch, for the one and two-phase wind simulations, respectively, never
forming the quasi-spherical accretion flows suggested in some previous work.
Our work suggests that, averaged over time scales of 100s to 1000s of years,
the radiative and mechanical luminosity of Sgr A* may be substantially higher
than it is in its current state. Further improvements of the wind accretion
modelling of Sgr A* will rely on improved observational constraints for the
wind properties and stellar orbits.Comment: 16 pages, 18 colour figures. Accepted by MNRAS. Full resolution paper
and movies available at http://www.mpa-garching.mpg.de/~jcuadra/Winds/ . (v2:
minor changes
Spin-1 effective Hamiltonian with three degenerate orbitals: An application to the case of V_2O_3
Motivated by recent neutron and x-ray observations in V_2O_3, we derive the
effective Hamiltonian in the strong coupling limit of an Hubbard model with
three degenerate t_{2g} states containing two electrons coupled to spin S = 1,
and use it to re-examine the low-temperature ground-state properties of this
compound. An axial trigonal distortion of the cubic states is also taken into
account. Since there are no assumptions about the symmetry properties of the
hopping integrals involved, the resulting spin-orbital Hamiltonian can be
generally applied to any crystallographic configuration of the transition metal
ion giving rise to degenerate t_{2g} orbitals. Specializing to the case of
V_2O_3 we consider the antiferromagnetic insulating phase. We find two
variational regimes, depending on the relative size of the correlation energy
of the vertical pairs and the in-plane interaction energy. The former favors
the formation of stable molecules throughout the crystal, while the latter
tends to break this correlated state. We determine in both cases the minimizing
orbital solutions for various spin configurations, and draw the corresponding
phase diagrams. We find that none of the symmetry-breaking stable phases with
the real spin structure presents an orbital ordering compatible with the
magnetic space group indicated by very recent observations of non-reciprocal
x-ray gyrotropy in V_2O_3. We do however find a compatible solution with very
small excitation energy in two distinct regions of the phase space, which might
turn into the true ground state of V_2O_3 due to the favorable coupling with
the lattice. We illustrate merits and drawbacks of the various solutions and
discuss them in relation to the present experimental evidence.Comment: 36 pages, 19 figure
The nature of the tensor order in Cd2Re2O7
The pyrochlore metal Cd2Re2O7 has been recently investigated by
second-harmonic generation (SHG) reflectivity. In this paper, we develop a
general formalism that allows for the identification of the relevant tensor
components of the SHG from azimuthal scans. We demonstrate that the secondary
order parameter identified by SHG at the structural phase transition is the
x2-y2 component of the axial toroidal quadrupole. This differs from the 3z2-r2
symmetry of the atomic displacements associated with the I-4m2 crystal
structure that was previously thought to be its origin. Within the same
formalism, we suggest that the primary order parameter detected in the SHG
experiment is the 3z2-r2 component of the magnetic quadrupole. We discuss the
general mechanism driving the phase transition in our proposed framework, and
suggest experiments, particularly resonant X-ray scattering ones, that could
clarify this issue.Comment: some additions and clarifications adde
- …
