25 research outputs found

    Performance of magnetic dipole contribution on ferromagnetic non-Newtonian radiative MHD blood flow: An application of biotechnology and medical sciences

    Get PDF
    Casson flow ferromagnetic liquid blood flow over stretching region is studied numerically. The domain is influence by radiation and blood flow velocity and thermal slip conditions. Blood acts an impenetrable magneto-dynamic liquid yields governing equations. The conservative governing nonlinear partial differential equations, reduced to ODEs by the help of similarity translation technique. The transport equations were transformed into first order ODEs and the resultant system are solved with help of 4th order R-K scheme. Performing a magnetic dipole with a Casson flow across a stretched region with Brownian motion and Thermophoresis is novelty of the problem. Significant applications of the study in some spheres are metallurgy, extrusion of polymers, production in papers and rubber manufactured sheets. Electronics, analytical instruments, medicine, friction reduction, angular momentum shift, heat transmission, etc. are only few of the many uses for ferromagnetic fluids. As ferromagnetic interaction parameter value improves, the skin-friction, Sherwood and Nusselt numbers depreciates. A comparative study of the present numerical scheme for specific situations reveals a splendid correlation with earlier published work. A change in blood flow velocity magnitude has been noted due to Casson parameter. Increasing change in blood flow temperature noted due to Casson parameter. Skin-friction strengthened and Nusselt number is declined with Casson parameter. The limitation of current work is a non-invasive magnetic blood flow collection system using commercially available magnetic sensors instead of SQUID or electrodes.Unai Fernandez-Gamiz was supported by Government of the Basque Country [ELKARTEK21/10KK-2021/00014 & ELKARTEK22/85]. Irfan Nurhidayat was supported by King Mongkut’s Institute of Technology Ladkrabang (KMITL), Bangkok, Thailand [KDS2020/045]

    NSs Encoded by Groundnut Bud Necrosis Virus Is a Bifunctional Enzyme

    Get PDF
    Groundnut bud necrosis virus (GBNV), a member of genus Tospovirus in the family Bunyaviridae, infects a large number of leguminosae and solanaceae plants in India. With a view to elucidate the function of nonstructural protein, NSs encoded by the small RNA genome (S RNA), the NSs protein of GBNV- tomato (Karnataka) [1] was over-expressed in E. coli and purified by Ni-NTA chromatography. The purified rNSs protein exhibited an RNA stimulated NTPase activity. Further, this activity was metal ion dependent and was inhibited by adenosine 5′ (β, γ imido) triphosphate, an ATP analog. The rNSs could also hydrolyze dATP. Interestingly, in addition to the NTPase and dATPase activities, the rNSs exhibited ATP independent 5′ RNA/DNA phosphatase activity that was completely inhibited by AMP. The 5′ α phosphate could be removed from ssDNA, ssRNA, dsDNA and dsRNA thus confirming that rNSs has a novel 5′ α phosphatase activity. K189A mutation in the Walker motif A (GxxxxGKT) resulted in complete loss of ATPase activity, but the 5′ phosphatase activity was unaffected. On the other hand, D159A mutation in the Walker motif B (DExx) resulted in partial loss of both the activities. These results demonstrate for the first time that NSs is a bifunctional enzyme, which could participate in viral movement, replication or in suppression of the host defense mechanism

    A chemical engineering application on hyperbolic tangent flow examination about sphere with Brownian motion and thermo phoresis effects using BVP5C

    Get PDF
    Brownian motion and thermophoresis impacts are discussed in relation to a tangent hyperbolic fluid encircling a sphere subject to a convective boundary condition and a Biot number. Concentration boundary conditions involving a wall normal flow of zero nanoparticles are an unexplored area of research. The governing non-linear BVP is transformed into a higher-order non-linear ODE using similarity transformations. Following equations were numerically solved for various values of emerging parameters using the matlab function bvp5c. Calculated values for velocity, concentration, temperature, the skin friction coefficient, Sherwood and Nusselt numbers are all shown, tabulated for analysis. Laminar boundary layer flow and heat transfer from a sphere in two-dimensional nano fluid is the novelty of the current work. The Weissenberg number decreases the velocity boundary layer thickness. The Biot number parameter lowers the field's temperature and speed

    Effect of Surfactant Addition on Bi2Te3 Nanostructures Synthesized by Hydrothermal Method

    No full text
    In the present work, we have prepared Bi2Te3 nanostructures with different morphologies such as nano-spherical, nanoplates and nanoflakes obtained using various surfactant additions (EG, PVP, and EDTA) by a hydrothermal method. The shape of the nanoparticles can be controlled by addition of surfactants. The samples were characterized by x-ray diffraction (XRD) and scanning electron microscopy (SEM). It is found that the minority BiOCl phase disappears after maintained pH at 10 with EG as surfactant. SEM bulk microstructure reveals that the sample consists of fine and coarse grains. Temperature dependence of thermoelectric properties of the nanostructured bulk sample was investigated in the range of 300-450K. The presence of nanograins in the bulk sample exhibits a reduction of thermal conductivity and less effect on electrical conductivity. As a result, a figure of merit of the sintered bulk sample reached 0.2 at 400 K. A maximum micro Vickers hardness of 102 Hv was obtained for the nanostructured sample, which was higher than the other reported results

    Wytwarzanie i konsolidacja proszków stopowych zn4sb3 przez kombinację procesów atomizacji gazowej i spiekania

    No full text
    In this study, single phase polycrystalline Zn4Sb3 as well as 11 at.% Zn-rich Zn4Sb3 alloy having ε-Zn4Sb3 (majority phase) and Zn (minority phase) phases bulk samples produced by gas-atomization and subsequently consolidated by spark plasma sintering (SPS) process. The crystal structures were analyzed by X-ray diffraction (XRD) and cross-sectional microstructure were observed by the scanning electron microscopy (SEM). The internal grain microstructure of 11at.% Zn-rich Zn4Sb3 powders shows lamellar structure. Relative density, Vickers hardness and crack lengths were measured to investigate the effect of sintering temperature of Zn4Sb3 samples which are sintered at 653, 673 and 693 K. Relative density of the single phase bulk Zn4Sb3 sample reached to 99.2% of its theoretical density. The micro Vickers hardness of three different sintering temperatures were found around 2.17 – 2.236 GPa

    Flow over a stretchable cylinder with nonlinear heat sources/sinks: Magnetic dipoles application

    No full text
    This work contributes mainly an analysis of the impact of a generated magnetic dipole on the magneto heat transport inside a deformable cylinder. Magnetic dipole signifies, magnotherapy and spectroscopy which are medical applications, generate static magnetic fields. The investigation considers the influence of non-linear heat sources and sinks, which result in a noteworthy phenomenon. The flow field is governed by accurate and nondimensional factors, which are used to convert the initial set of highly nonlinear and coupled partial differential equations into a set of nonlinear ordinary differential equations. These nonlinear ordinary differential equations are then solved mathematically using the bvp4c function in MATLAB, taking into account the boundary conditions. Ultimately, this section provides an overview of the ramifications stemming from various physical constraints on the movement of fluids, including nonlinear source/sink effects and other more factors. Ultimately, the discovered results that impose limitations are juxtaposed with those documented in the scientific literature, revealing a significant connection

    Characterization of Cu and Ni Nano-Fluids Synthesized by Pulsed Wire Evaporation Method

    No full text
    In the present work, Cu and Ni nanofluids were synthesized using the pulsed wire evaporation (PWE) method in the different aqueous medias, namely (ethanol and ethylene glycol), and the effects of the aqueous media on the dispersion state, stability, and particle size of nanoparticles were studied. The size and morphology of synthesized nano-particles were investigated by transmission electron microscopy (TEM). Also, the dispersion stability of the nanofluids was evaluated by turbiscan analysis. The TEM results showed that the nano-particles were spherical in shape, and the average particle size was below 100 nm. The average particle size of the Cu nano-particles was smaller than that of Ni, which was attributed to a difference in the specific sublimation energy of the elements. Moreover, ethylene glycol (EG) exhibited higher suspension stability than ethanol. Finally, the dispersion stability of Cu@EG displayed the highest value due to lower particle size and greater viscosity

    Effect of Acid Dissolution Conditions on Recovery of Valuable Metals from Used Plasma Display Panel Scrap

    No full text
    The objective of this particular study was to recover valuable metals from waste plasma display panels using high energy ball milling with subsequent acid dissolution. Dissolution of milled (PDP) powder was studied in HCl, HNO3, and H2SO4 acidic solutions. The effects of dissolution acid, temperature, time, and PDP scrap powder to acid ratio on the leaching process were investigated and the most favorable conditions were found: (1) valuable metals (In, Ag, Mg) were recovered from PDP powder in a mixture of concentrated hydrochloric acid (HCl:H2O = 50:50); (2) the optimal dissolution temperature and time for the valuable metals were found to be 60°C and 30 min, respectively; (3) the ideal PDP scrap powder to acid solution ratio was found to be 1:10. The proposed method was applied to the recovery of magnesium, silver, and indium with satisfactory results
    corecore