27 research outputs found

    Identification of Brassica oleracea monosomic alien chromosome addition lines with molecular markers reveals extensive gene duplication

    Full text link
    Chromosomes of Brassica oleracea (2n=18) were dissected from the resynthesized amphidiploid B. napus Hakuran by repeated backcrosses to B. campestris (2n=20), creating a series of monosomic alien chromosome addition line plants (2n=21). Using morphological, isozyme and restriction fragment length polymorphism markers (RFLPs), 81 putative loci were identified. Of nine possible synteny groups, seven were represented in the 25 monosomic addition plants tested. Sequences homologous to 26% of the 61 DNA clones utilized (80% were cDNA clones) were found on more than one synteny group, indicating a high level of gene duplication. Anomalous synteny associations were detected in four 2n=21 plants. One of these plants showed two markers from one B. oleracea chromosome associated with a second complete B. oleracea synteny group, suggesting translocation or recombination between non-homologous chromosomes in Hakuran or the backcross derivatives. The other three 2n=21 plants each contained two or more B. oleracea synteny groups, suggesting chromosome substitution.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/47572/1/438_2004_Article_BF00265054.pd

    Astroglial ER-mitochondria calcium transfer mediates endocannabinoid-dependent synaptic integration

    Get PDF
    Intracellular calcium signaling underlies the astroglial control of synaptic transmission and plasticity. Mitochondria-endoplasmic reticulum contacts (MERCs) are key determinants of calcium dynamics, but their functional impact on astroglial regulation of brain information processing is unexplored. We found that the activation of astrocyte mitochondrial-associated type-1 cannabinoid (mtCB1) receptors determines MERC-dependent intracellular calcium signaling and synaptic integration. The stimulation of mtCB1 receptors promotes calcium transfer from the endoplasmic reticulum to mitochondria through a specific molecular cascade, involving the mitochondrial calcium uniporter (MCU). Physiologically, mtCB1-dependent mitochondrial calcium uptake determines the dynamics of cytosolic calcium events in astrocytes upon endocannabinoid mobilization. Accordingly, electrophysiological recordings in hippocampal slices showed that conditional genetic exclusion of mtCB1 receptors or dominant-negative MCU expression in astrocytes blocks lateral synaptic potentiation, through which astrocytes integrate the activity of distant synapses. Altogether, these data reveal an endocannabinoid link between astroglial MERCs and the regulation of brain network functions

    Linking emotional valence and anxiety in a mouse insula-amygdala circuit

    No full text
    Abstract Responses of the insular cortex (IC) and amygdala to stimuli of positive and negative valence are altered in patients with anxiety disorders. However, neural coding of both anxiety and valence by IC neurons remains unknown. Using fiber photometry recordings in mice, we uncover a selective increase of activity in IC projection neurons of the anterior (aIC), but not posterior (pIC) section, when animals are exploring anxiogenic spaces, and this activity is proportional to the level of anxiety of mice. Neurons in aIC also respond to stimuli of positive and negative valence, and the strength of response to strong negative stimuli is proportional to mice levels of anxiety. Using ex vivo electrophysiology, we characterized the IC connection to the basolateral amygdala (BLA), and employed projection-specific optogenetics to reveal anxiogenic properties of aIC-BLA neurons. Finally, we identified that aIC-BLA neurons are activated in anxiogenic spaces, as well as in response to aversive stimuli, and that both activities are positively correlated. Altogether, we identified a common neurobiological substrate linking negative valence with anxiety-related information and behaviors, which provides a starting point to understand how alterations of these neural populations contribute to psychiatric disorders

    Changes in striatal procedural memory coding correlate with learning deficits in a mouse model of Huntington disease

    No full text
    In hereditary neurodegenerative Huntington disease (HD), early cognitive impairments before motor deficits have been hypothesized to result from dysfunction in the striatum and cortex before degeneration. To test this hypothesis, we examined the firing properties of single cells and local field activity in the striatum and cortex of pre–motor-symptomatic R6/1 transgenic mice while they were engaged in a procedural learning task, the performance on which typically depends on the integrity of striatum and basal ganglia. Here, we report that a dramatically diminished recruitment of the vulnerable striatal projection cells, but not local interneurons, of R6/1 mice in coding for the task, compared with WT littermates, is associated with severe deficits in procedural learning. In addition, both the striatum and cortex in these mice showed a unique oscillation at high γ-frequency. These data provide crucial information on the in vivo cellular processes in the corticostriatal pathway through which the HD mutation exerts its effects on cognitive abilities in early HD

    Chronic Stress Alters Striosome-Circuit Dynamics, Leading to Aberrant Decision-Making

    No full text
    Effective evaluation of costs and benefits is a core survival capacity that in humans is considered as optimal, “rational” decision-making. This capacity is vulnerable in neuropsychiatric disorders and in the aftermath of chronic stress, in which aberrant choices and high-risk behaviors occur. We report that chronic stress exposure in rodents produces abnormal evaluation of costs and benefits resembling non-optimal decision-making in which choices of high-cost/high-reward options are sharply increased. Concomitantly, alterations in the task-related spike activity of medial prefrontal neurons correspond with increased activity of their striosome-predominant striatal projection neuron targets and with decreased and delayed striatal fast-firing interneuron activity. These effects of chronic stress on prefronto-striatal circuit dynamics could be blocked or be mimicked by selective optogenetic manipulation of these circuits. We suggest that altered excitation-inhibition dynamics of striosome-based circuit function could be an underlying mechanism by which chronic stress contributes to disorders characterized by aberrant decision-making under conflict.National Institute of Mental Health (Grant R01 MH060379)CHDI Foundation (Award A-5552)Army Research Office (Contract W911NF-10-1-0059

    Striosomes Mediate Value-Based Learning Vulnerable in Age and a Huntington’s Disease Model

    No full text
    © 2020 Elsevier Inc. Friedman et al. find that specialized regions of the striatum, a key part of the brain's movement and motivation control system, are essential for learning about the values of good and bad outcomes of decisions. The learning signals in striosomes scale according to subjective value and are vulnerable to decline with aging and in neurodegenerative disorders
    corecore