25 research outputs found

    Extra-Thymic Physiological T Lineage Progenitor Activity Is Exclusively Confined to Cells Expressing either CD127, CD90, or High Levels of CD117

    Get PDF
    T cell development depends on continuous recruitment of progenitors from bone marrow (BM) to the thymus via peripheral blood. However, both phenotype and functional characteristics of physiological T cell precursors remain ill-defined. Here, we characterized a putative CD135+CD27+ T cell progenitor population, which lacked expression of CD127, CD90, and high levels of CD117 and was therefore termed triple negative precursor (TNP). TNPs were present in both BM and blood and displayed robust T lineage potential, but virtually no myeloid or B lineage potential, in vitro. However, TNPs did not efficiently generate T lineage progeny after intravenous or intrathymic transfer, suggesting that a physiological thymic microenvironment does not optimally support T cell differentiation from TNPs. Thus, we propose that physiological T cell precursors are confined to populations expressing either CD127, CD90, or high levels of CD117 in addition to CD135 and CD27 and that TNPs may have other physiological functions

    T-cell subsets and suppressor cells in human bone marrow

    No full text

    T-cell subsets and suppressor cells in human bone marrow

    No full text

    Clonable progenitors committed to the T lymphocyte lineage in the mouse bone marrow; use of an extrathymic pathway

    No full text
    We searched for clonable committed T cell progenitors in the adult mouse bone marrow and isolated rare (≈0.05%) cells with the Thy-1(hi)CD2(−)CD16(+)CD44(hi)CD25(−)Lin(−) phenotype. In vivo experiments showed that these cells were progenitors committed only to reconstituting the T cell lineage of irradiated Ly5 congenic hosts. Reconstitution of the thymus was minimal compared with that of the bone marrow, spleen, and lymph nodes. At limiting dilutions, donor T cell reconstitution of the spleen frequently occurred without detectable donor cells in the thymus. Progenitors were capable of rapidly reconstituting athymic hosts. In conclusion, the clonable bone marrow progenitors were capable of T cell reconstitution predominantly by means of an extrathymic pathway

    Treatment of 4T1 Metastatic Breast Cancer with Combined Hypofractionated Irradiation and Autologous T-Cell Infusion

    No full text
    The goal of this study was to determine whether a combination of local tumor irradiation and autologous T-cell transplantation can effectively treat metastatic 4T1 breast cancer in mice. BALB/c mice were injected subcutaneously with luciferase-labeled 4T1 breast tumor cells and allowed to grow for 21 days, at which time metastases appeared in the lungs. Primary tumors were treated at that time with 3 daily fractions of 20 Gy of radiation each. Although this approach could eradicate primary tumors, tumors in the lungs grew progressively. We attempted to improve efficacy of the radiation by adding autologous T-cell infusions. Accordingly, T cells were purified from the spleens of tumor-bearing mice after completion of irradiation and cryopreserved. Cyclophosphamide was administered thereafter to induce lympho-depletion, followed by T-cell infusion. Although the addition of cyclophosphamide to irradiation did not improve survival or reduce tumor progression, the combination of radiation, cyclophosphamide and autologous T-cell infusion induced durable remissions and markedly improved survival. We conclude that the combination of radiation and autologous T-cell infusion is an effective treatment for metastatic 4T1 breast cancer. (C) 2014 by Radiation Research Societyopen1188sciescopu

    T lymphoid differentiation in human bone marrow

    No full text
    The unique role of the thymus in the development of T cells was established >4 decades ago. To elucidate how uncommitted lymphoid progenitor cells are instructed to migrate from bone marrow to the thymus to undergo T lymphoid differentiation, we generated and analyzed a genome-wide gene expression profile of CD7(+) CD10(+) human bone marrow T cell lineage precursors (TLPs) by using the serial analysis of gene expression technique. Unexpectedly, the serial analysis of gene expression profile identified a high number of (pre-) T cell receptor antigen (TCR)-related transcripts in bone marrow TLPs. To determine the configuration of the TCRβ locus in these cells at a quantitative level, we sorted and analyzed bone marrow TLPs from five donors by single-cell PCR. Similar proportions of TLPs harbored TCRβ germ-line alleles, D-J, or V-DJ gene rearrangements. Thus, bone marrow TLPs are heterogenous with respect to TCRβ rearrangement status, suggesting an active recombination machinery that is consistent with the expression of RAG1, RAG2, and TdT in this population. As a hallmark of ongoing TCRβ V-DJ rearrangement, we could amplify broken-ended recombination-signal sequence DNA intermediates from bone marrow TLPs, but not from mature T cells by ligation-mediated PCR. Approximately half of the TCRβ rearrangements were compatible with the expression of a functional pre-TCR, which is in agreement with surface expression of pre-Tα on bone marrow TLPs as shown by confocal laser microscopy and flow cytometry. At a frequency <0.5% of mononucleated cells in human bone marrow, this population is rare, yet it exemplifies T lymphoid differentiation in the human already before immigration into the thymus
    corecore