66 research outputs found

    Synthesis and complexing properties of cyclic benzylopeptoids-a new family of extended macrocyclic peptoids

    Get PDF
    An efficient protocol for the solid-phase synthesis of six members of a new class of extended macrocyclic peptoids (based on ortho-, meta- and para-N-(methoxyethyl)aminomethyl phenylacetyl units) is described. Theoretical (DFT) and experimental (NMR) studies on the free and Na+-complexed cyclic trimers (3\u20135) and tetramers (6\u20138) demonstrate that annulation of the rigidified peptoids can generate new hosts with the ability to sequestrate one or two sodium cations with the affinities and stoichiometries defined by the macrocycle morphology. Ion transport studies have been also performed in order to better appreciate the factors promoting transmembrane cation translocation

    Artificial anion transporters in bilayer membranes

    No full text
    Anion transport across phospholipid membrane is a typical supramolecular function involving dynamic recognition of the substrate during the whole translocation process. Supramolecular chemists, taking inspiration by the natural anion transporters, have designed artificial systems able to mimic, at the functional level, several features of the natural ion channels. The scope of this research is twofold: on one hand to get insight on the molecular basis of recognition and transport, and on the other hand to get control of the biomedical relevant processes. The present review focuses on the synthetic systems promoting anion transport, covering both artificial channels and carriers that operate in phospholipid membrane. The design principles of such systems will be discussed together with the potential biomedical applications
    corecore