18,480 research outputs found
Two-step melting of the vortex solid in layered superconductors with random columnar pins
We consider the melting of the vortex solid in highly anisotropic layered
superconductors with a small concentration of random columnar pinning centers.
Using large-scale numerical minimization of a free-energy functional, we find
that melting of the low-temperature, nearly crystalline vortex solid (Bragg
glass) into a vortex liquid occurs in two steps as the temperature increases:
the Bragg glass and liquid phases are separated by an intermediate Bose glass
phase. A suitably defined local melting temperature exhibits spatial variation
similar to that observed in experiments.Comment: To appear in Phys. Rev. Let
2D Black Hole and Holographic Renormalization Group
In hep-th/0311177, the Large renormalization group (RG) flows of a
modified matrix quantum mechanics on a circle, capable of capturing effects of
nonsingets, were shown to have fixed points with negative specific heat. The
corresponding rescaling equation of the compactified matter field with respect
to the RG scale, identified with the Liouville direction, is used to extract
the two dimensional Euclidean black hole metric at the new type of fixed
points. Interpreting the large RG flows as flow velocities in holographic
RG in two dimensions, the flow equation of the matter field around the black
hole fixed point is shown to be of the same form as the radial evolution
equation of the appropriate bulk scalar coupled to 2D black hole.Comment: 21 page
The Qt distribution of the Breit current hemisphere in DIS as a probe of small-x broadening effects
We study the distribution 1/sigma dsigma/dQt, where Qt is the modulus of the
transverse momentum vector, obtained by summing over all hadrons, in the
current hemisphere of the DIS Breit frame. We resum the large logarithms in the
small Qt region, to next-to--leading logarithmic accuracy, including the
non-global logarithms involved. We point out that this observable is simply
related to the Drell-Yan vector boson and predicted Higgs Qt spectra at hadron
colliders. Comparing our predictions to existing HERA data thus ought to be a
valuable source of information on the role or absence of small-x (BFKL)
effects, neglected in conventional resummations of such quantities.Comment: 16 pages, 3 figures, uses JHEP3.cl
Spatial persistence and survival probabilities for fluctuating interfaces
We report the results of numerical investigations of the steady-state (SS)
and finite-initial-conditions (FIC) spatial persistence and survival
probabilities for (1+1)--dimensional interfaces with dynamics governed by the
nonlinear Kardar--Parisi--Zhang (KPZ) equation and the linear
Edwards--Wilkinson (EW) equation with both white (uncorrelated) and colored
(spatially correlated) noise. We study the effects of a finite sampling
distance on the measured spatial persistence probability and show that both SS
and FIC persistence probabilities exhibit simple scaling behavior as a function
of the system size and the sampling distance. Analytical expressions for the
exponents associated with the power-law decay of SS and FIC spatial persistence
probabilities of the EW equation with power-law correlated noise are
established and numerically verified.Comment: 11 pages, 5 figure
Third-generation muffin-tin orbitals
By the example of sp^3-bonded semiconductors, we illustrate what
3rd-generation muffin-tin orbitals (MTOs) are. We demonstrate that they can be
downfolded to smaller and smaller basis sets: sp^3d^10,sp^3, and bond orbitals.
For isolated bands, it is possible to generate Wannier functions a priori. Also
for bands, which overlap other bands, Wannier-like MTOs can be generated a
priori. Hence, MTOs have a unique capability for providing chemical
understanding.Comment: 13 pages, 8 eps figure
- …
