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Two-step melting of the vortex solid in layered superconductors with random

columnar pins
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We consider the melting of the vortex solid in highly anisotropic layered superconductors with a
small concentration of random columnar pinning centers. Using large-scale numerical minimization
of a free-energy functional, we find that melting of the low-temperature, nearly crystalline vortex
solid (Bragg glass) into a vortex liquid occurs in two steps as the temperature increases: the Bragg
glass and liquid phases are separated by an intermediate Bose glass phase. A suitably defined local
melting temperature exhibits spatial variation similar to that observed in experiments.
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The mixed phase of type-II superconductors with ran-
dom pinning constitutes an excellent test system for
studies of the effects of quenched disorder on the struc-
ture and melting of crystalline solids. In systems with
weak random point pinning, the existence of a low-
temperature topologically ordered Bragg glass (BrG)
phase with quasi-long-range translational order is now
well established [1, 2]. A variety of fascinating “glassy”
behavior has been experimentally observed [3] near the
first-order melting transition of the BrG phase in both
conventional and high-Tc superconductors. It has been
suggested [3, 4] that these observations can be under-
stood if it is assumed that the melting of the BrG phase
occurs in two steps: the BrG first transforms into a “mul-
tidomain” glassy phase which melts into the usual vortex
liquid at a slightly higher temperature.

In the presence of random columnar pinning, a
“strong” Bose glass (BoG) phase [5] without quasi-long-
range translational order occurs at low temperatures if
the concentration of pins is larger than that of vortex
lines. In the opposite limit of dilute pins, one expects [6]
a “weak” BoG phase at low temperatures which would
melt into an interstitial liquid (IL) as the temperature is
increased. In the IL phase, some of the vortices remain
pinned at the strong pinning centers, while the other, in-
terstitial ones form a liquid. A recent numerical study [7]
suggests that a topologically ordered BrG phase is also
possible in such systems if the pin concentration is suf-
ficiently small. It is also found experimentally, for both
point [8] and columnar [9] pinning, that the melting of
the solid phase is “broadened”: the local transition tem-
perature, measured by a discontinuity of the local mag-
netization, is different in different regions of the sample.

Here we report results of a numerical study that pro-
vides insights and explanations for some of the obser-
vations described above. From minimization of an ap-
propriate free energy functional, we find that the vortex
system in an extremely anisotropic, layered, supercon-

ductor with a random dilute array of strong columnar
pins (with both pins and magnetic field perpendicular to
the layers) forms a BrG phase at low temperatures. As T
is increased, this phase undergoes a first order transition
into a glassy phase which we identify as a polycrystalline
BoG. This phase then transforms, at a slightly higher T ,
into the IL phase via a second, more strongly first order
transition. We also show that the local transition tem-
peratures, obtained from the temperature-dependence of
a quantity that measures the degree of localization of the
vortices in a small region of the sample, exhibit substan-
tial spatial variation correlated with the local arrange-
ment of the pinning centers.

The model and methods we use are similar to those in
our earlier work [10] for a periodic array of columnar pins:
the main difference is that the pin array here is taken
to be random. Thus, we study a layered superconduc-
tor with vanishingly small Josephson interlayer coupling
(vortices on different layers are coupled via the electro-
magnetic interaction only). In this limit, appropriate [11]
for extremely anisotropic Bi- and Tl-based high-Tc ma-
terials, the energy of a system of “pancake” vortices re-
siding on the superconducting layers may be written as
a sum of anisotropic two-body interactions. We use the
Ramakrishnan-Yussouff (RY) free energy functional [12].
Since the potential produced by a set of straight colum-
nar pins perpendicular to the layers is the same on every
layer, ρ(r), the time-averaged local areal density of vor-
tices at point r on a layer, must be the same on all layers.
The free energy F per layer may then be written as:

β(F [ρ] − F0) =

∫
d2r [ρ(r){ln(ρ(r)) − ln(ρ0)} − δρ(r)]

−
1

2

∫
d2r

∫
d2r′C̃(|r − r

′|)δρ(r)δρ(r′)

+ β

∫
d2rVp(r)δρ(r). (1)

Here, δρ(r) ≡ ρ(r) − ρ0, F0 is the free energy of the
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FIG. 1: (Color online.) Results for a sample with 4096 vortices and 64 pins. Panel (a): Voronoi plot (see text) for the BrG
minimum at 17.8K, with 5-, 6- and 7- coordinated sites indicated by (red) triangles, small (black) dots and large (green) dots,
respectively. Black circles denote pin positions. Dislocations form tightly bound clusters near pin locations. Regions labeled
A, B, C are discussed in the text and Fig.2. Panel (b): Same as panel (a), but for a BoG minimum at 18.2K. Here, dislocations
are arranged in lines to form grain boundaries. Panel (c): Structure factors at 18.4K. Results for the BrG, BoG and IL minima
are shown by (yellow) circles, (purple) triangles, and (green) squares, respectively. Vertical lines are guides to the eye.

uniform liquid of areal density ρ0 (= B/Φ0 where B
is the magnetic induction and Φ0 the flux quantum),
β = 1/kBT , Vp(r) is the pinning potential, and C̃(r) ≡∑

n C(n, r), where C(n, r) is the direct pair correlation

function of a layered liquid of pancake vortices (n is
the layer separation and r is the separation in the layer
plane). We use the results for C(n, r) obtained [11]
from a hypernetted chain calculation. The RY functional
yields [10, 11] a correct quantitative description of the
melting transition in the absence of pinning. The po-
tential V0(r) at r due to a pinning center at the origin is
assumed to have the form V0(r) = −αΓ(1−r2/r20) for r ≤
r0 and V0(r) = 0 if r > r0. Here, Γ ≡ βdΦ2

0/8π
2λ2(T ), d

is the layer spacing, λ(T ) is the penetration depth in the
layer plane, r0 is a range parameter and α is a strength
parameter. The net pinning potential Vp(r) is the sum of
the potentials due to Np randomly placed pinning cen-
ters. We use parameter values appropriate to BSCCO
i.e. λ(T = 0) = 1500Å and d = 15Å, and assume a two-
fluid T -dependence of λ(T ) with Tc(0) = 85K. Defining
a0 (which we will use as our unit of length) via the re-
lation πa2

0ρ0 = 1, we set r0 = 0.1a0 and α = 0.05. For
these values, each pinning center traps one vortex [10] in
the temperature range of interest.

We discretize space by defining density variables {ρj}
at the sites of a triangular grid of size (Nh)2 with peri-
odic boundary conditions. The grid spacing h is taken to
be a/16 where a ≃ 1.988a0 is the equilibrium spacing [10]
of the pure vortex lattice at melting for the value of the
magnetic field (B = 2kG) used here. The Np pinning
centers are randomly put on computational lattice sites.
Local minima of the discretized F [ρ] Eq.(1), written as a
function of the {ρj}, are then obtained numerically using
a methodology quite similar to that in Ref. [10]. We re-

port here primarily results for N = 1024 (corresponding,
for the chosen value of h, to including Nv = 4096 vor-
tices in the calculation), and relative pin concentration
(the ratio of the number of pins Np to Nv) c = 1/64. A
larger pin concentration, c =1/32, and samples of size N
= 512 (1024 vortices) were also studied [13]. Results for
the glassy phases depend somewhat, see below, on the
placement of the Np random pins. Over twenty differ-
ent random pin configurations were studied and averages
taken where appropriate.

Different local minima of the discretized F , corre-
sponding to the several possible phases of the system, are
reached when the numerical minimization is performed
starting from different initial states [10]. The free en-
ergies of these different minima at a given T determine
the (mean-field) phase diagram. A great advantage of
our method in identifying minima representing differ-
ent phases is that at each minimum the values of the
full {ρj} set are available. We can then calculate e.g.
the structure factor S(k) = |ρ(k)|2/Nv. We can fur-
ther characterize the structure of a minimum by analyz-
ing additional information [13] contained in the full set
{ρj}. In particular, we have calculated the local peak

densities, defined as the values of the density at local

peaks. The density is considered to locally peak at a
mesh point j if ρj is higher than those at all other mesh
points within a distance a/2 from j. At low-temperature
minima with localized vortices, these local density peaks
lie where the vortices are localized: their number matches
the number of vortices Nv. Thus, the positions of these
peaks define a “vortex lattice”. To elucidate the de-
gree of order in this “vortex lattice”, we have found it
particularly useful to carry out a Voronoi construction,
thereby determining the number of nearest neighbors of
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FIG. 2: (Color online). Main plot: Temperature depen-
dence of the free energies of different minima of the sample of
Fig. 1. Results for the BrG, BoG and IL minima are shown
by (blue) diamonds, (black) circles and (red) triangles, re-
spectively. The crossings near 17.9K and 18.3K correspond
to transitions. Upper inset: Bond-orientational correlation
function g6(r) (see text), plotted vs. r/a0, for BrG (upper
(red) curve) and BoG (lower (blue) curve) minima at 17.0K
and c = 1/64. Lower inset: T-dependence of the average
local peak density ρp

av for small regions (see text) near the
points A, B and C in Fig.1(a). Results for A, B and C are
shown by (red) plus signs, (green) crosses and (blue) circles,
respectively. Solid lines are guides to the eye.

each vortex and hence the defect structure of the min-
imum. To address questions about orientational order,
we have obtained the bond-orientational vortex correla-
tion function g6(r), defined as the correlation function of
the field ψ(r) =

∑
j exp[6iθj(r)]/nn, where θj(r) is the

angle that the bond connecting a vortex at r to its jth
neighbor makes with a fixed reference direction, and nn

is the number of neighbors of the vortex at r.
We find three different kinds of local minima of F . The

simplest kind is found by quenching the system, starting
from uniform initial conditions, to temperatures some-
what higher than the equilibrium melting temperature of
the pure vortex lattice (T 0

m ≃ 18.4K [10]). The minimum
can then be slowly cooled to below T 0

m until it becomes
unstable. This phase has local vortex densities close to
the uniform liquid density everywhere except near the
pinning centers, each of which traps one vortex. These
minima clearly correspond to the interstitial liquid (IL)
state with very small (≤ 5) peak values of S(k) (see panel
(c) of Fig.1).

The second kind of local minima are obtained by
quenching to temperatures below T 0

m with initial condi-
tions corresponding to a perfectly crystalline initial state
(we use the crystalline state for which the pinning energy
is minimum). They can then be cooled down, or warmed
up to above T 0

m. This phase is nearly crystalline: the
densities at local peaks turn out to be large (5-10 times
ρ0) nearly everywhere, except at the pins where they are

much higher. There are also a few small regions of lower
peak density, indicating weakly localized vortices. The
Voronoi plots for such minima (see panel (a) in Fig. 1)
clearly illustrate the defect structure. A pair of adjacent
5- and 7-coordinated sites, shown as (red) triangles and
large (green) dots respectively, corresponds to a disloca-
tion. These dislocations form tightly bound clusters in
this case. These clusters are located near pinning sites,
shown by black circles in panels (a) and (b) of Fig.1. The
local peak densities near the defect clusters are lower, in-
dicating weaker localization of the vortices. The struc-
ture factor plot, shown in panel (c), exhibits six sharp
Bragg peaks for these minima. The “crystalline order pa-
rameter” extracted from the peak value of S(k) is large
at low temperatures (≃ 0.55 at 17K for Nv = 1024) and
decreases very slowly with sample size (by ∼ 6% as the
sample size is doubled). The vortex bond-orientational
correlation function g6(r) for such minima (see Fig. 2,
upper inset) saturates to a large value for large r. Thus,
these minima exhibit all the characteristics [1] of a BrG
phase and we conclude that they can be so identified.
However, our numerical study can not rule out the oc-
currence of unpaired dislocations at much longer length
scales. If this happens, then these minima may corre-
spond to a “hexatic glass” [14] phase. In any case, it is
clear that these minima represent a phase that is distinct
from the polycrystalline one described below.

The third kind of minima are obtained either by slowly
cooling a liquid-like minimum to below the temperature
where it becomes unstable, or by quenching with a uni-
form initial density to a temperature well below T 0

m.
The Voronoi construction results for this case (panel (b)
of Fig. 1) clearly show a polycrystalline structure with
the dislocations lining up along grain boundaries, which
lie mainly in regions without any pinning center. As a
liquid-like initial state is cooled from relatively high T ,
the vortices arrange themselves in triangular crystalline
patches around the pins. The orientation of a crystalline
patch depends on the local pin arrangement. As the tem-
perature is lowered further, misaligned patches join each
other at grain boundaries to form a new minimum of
this kind. The local peak density is substantially lower
near the grain boundaries. As these minima are warmed
up[13], the regions near the grain boundaries begin to
“melt” before the other parts of the sample. As shown in
panel (c) of Fig.1, the structure factor for these minima
exhibits several (typically more than six) peaks of height
much lower than that of the six Bragg peaks found for
the BrG minimum. The function g6(r) for such minima
goes to zero at large r (see Fig. 2, upper inset). We
conclude, therefore, by considering all the evidence, that
such minima correspond to polycrystalline BoG states.
While for any given pin configuration the IL and BrG
states reached upon the minimization are, within numer-
ical uncertainty, unique, different BoG type states can be
reached using different starting states and cooling rates.
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This is characteristic of a glassy phase. When more than
one BoG minima are found at a given T , we consider
the one with the lowest free energy. The polycrystalline
nature of the BoG minima is consistent with the results
of experiments [15] and simulations [16] of the Bose glass
phase in the dilute-pin regime.

Fig. 2 illustrates the main result of our study. There
we show the temperature dependence of β(F −F0) of the
BrG, IL and BoG minima for the same pin configura-
tion at c=1/64. The BrG minimum has the lowest free
energy at low temperatures. Its free energy crosses that
of the BoG minimum near 17.9K, indicating a first-order
BrG-BoG transition at this temperature. The BoG phase
then melts into the IL phase at a slightly higher temper-
ature, near 18.3K, as indicated by the crossing of the free
energies of these two minima. Thus, the melting of the
low-temperature BrG phase with increasing temperature
occurs in two steps, with a small region of BoG phase sep-
arating the BrG and IL phases. The grain boundaries in
the BoG minima survive thermal cycling [15] across the
BoG-IL transition temperature, whereas similar thermal
cycling produces grain boundaries in the BrG minima, in-
dicating that the BoG phase is thermodynamically stable
near the BoG-IL transition.

For samples with c = 1/64, the average value of the
temperature interval in which the BoG is the equilib-
rium state is 0.42 K. This width varies from sample to
sample between less than 0.1 in one single case, to 1.2K.
Thus, the two-step transition is a generic feature. The en-
tropy jump at the BrG-BoG (lower) transition (≃ 0.1kB

per vortex) is smaller than that at the BoG-IL transition
(≃ 0.15kB per vortex). These values do not depend sig-
nificantly on the system size and their sum is slightly
smaller than the value (0.29kB) at the single melting
transition in the pure system. The size of these jumps
makes it very unlikely that fluctuations would change the
nature of the transitions in our 3D system. The value
of the upper transition temperature is between 18.2K
and 18.3K for all samples at c = 1/64. These values
are close to the first-order melting temperature of the
pure system [10]. The weak dependence of the transition
temperatures on c is consistent with experiments [9, 15].
Also, a first-order freezing transition of the IL to a poly-
crystalline solid has been observed [15] in experiments on
BSCCO with a small concentration of columnar pins. A
narrow “two-phase” region found near the BrG melting
transition in Ref.[7] may correspond to an intermediate
BoG phase. Alternatively, the sample size (∼ 100 vortex
lines) in Ref. [7] may be too small for the detection of an
intermediate BoG phase with large crystalline domains.

The BrG-BoG transition occurs as a result of a com-
petition between elastic and pinning parts of the free en-
ergy. The BrG minimum has a lower elastic (free) energy
than the BoG minimum, but a higher pinning energy: the
vortices adjust better to the pinning potential in the BoG
minimum. The softening of the lattice near melting de-

creases the relative importance of the elastic component,
thus causing a crossing of the two free energies.

We have also calculated a space-dependent “local
transition temperature” by monitoring the temperature-
dependence of ρp

av, the average of the local peak density
in small regions containing ∼ 100 vortices. Vortices lo-
calized at pinning centers are not included in the calcula-
tion of ρp

av. Values of ρp
av much larger than ρ0 indicate a

solid-like local structure, while values close to ρ0 indicate
liquid-like behavior. In Fig.2, lower inset, we show the T -
dependence of ρp

av for three regions centered at points A,
B and C in panel (a) of Fig.1. The local transition tem-
perature, defined as the temperature at which ρp

av crosses
3ρ0 [10], is different in the three regions. The lowest lo-
cal Tc corresponds to the BrG-BoG transition and reflects
the local melting near a grain boundary of the BoG min-
imum (point C). The highest local Tc is higher than the
BoG-IL transition temperature, reflecting solid-like local
structure near a cluster of pinning sites in the IL mini-
mum (point A). The range of variation of the local Tc’s
is comparable to that found in experiments [8, 9].

Thus, we have shown that a layered superconductor
with a small concentration of columnar pins exhibits a
two-step melting transition from a low-T BrG phase to a
high-T IL phase via an intermediate BoG phase. A suit-
ably defined local transition temperature exhibits spatial
variations correlated with the local arrangement of pin-
ning centers. Our results are consistent with experiment,
and support the suggestion [3, 4] of similar behavior in
systems with point pinning.
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