210 research outputs found

    Machine phenotyping of cluster headache and its response to verapamil

    Get PDF
    Cluster headache is characterized by recurrent, unilateral attacks of excruciating pain associated with ipsilateral cranial autonomic symptoms. Although a wide array of clinical, anatomical, physiological, and genetic data have informed multiple theories about the underlying pathophysiology, the lack of a comprehensive mechanistic understanding has inhibited, on the one hand, the development of new treatments and, on the other, the identification of features predictive of response to established ones. The first-line drug, verapamil, is found to be effective in only half of all patients, and after several weeks of dose escalation, rendering therapeutic selection both uncertain and slow. Here we use high-dimensional modelling of routinely acquired phenotypic and MRI data to quantify the predictability of verapamil responsiveness and to illuminate its neural dependants, across a cohort of 708 patients evaluated for cluster headache at the National Hospital for Neurology and Neurosurgery between 2007 and 2017. We derive a succinct latent representation of cluster headache from non-linear dimensionality reduction of structured clinical features, revealing novel phenotypic clusters. In a subset of patients, we show that individually predictive models based on gradient boosting machines can predict verapamil responsiveness from clinical (410 patients) and imaging (194 patients) features. Models combining clinical and imaging data establish the first benchmark for predicting verapamil responsiveness, with an area under the receiver operating characteristic curve of 0.689 on cross-validation (95% confidence interval: 0.651 to 0.710) and 0.621 on held-out data. In the imaged patients, voxel-based morphometry revealed a grey matter cluster in lobule VI of the cerebellum (–4, –66, –20) exhibiting enhanced grey matter concentrations in verapamil non-responders compared with responders (familywise error-corrected P = 0.008, 29 voxels). We propose a mechanism for the therapeutic effect of verapamil that draws on the neuroanatomy and neurochemistry of the identified region. Our results reveal previously unrecognized high-dimensional structure within the phenotypic landscape of cluster headache that enables prediction of treatment response with modest fidelity. An analogous approach applied to larger, globally representative datasets could facilitate data-driven redefinition of diagnostic criteria and stronger, more generalizable predictive models of treatment responsiveness

    High RBM3 expression in prostate cancer independently predicts a reduced risk of biochemical recurrence and disease progression

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>High expression of the RNA-binding protein RBM3 has previously been found to be associated with good prognosis in breast cancer, ovarian cancer, malignant melanoma and colorectal cancer. The aim of this study was to examine the prognostic impact of immunohistochemical RBM3 expression in prostate cancer.</p> <p>Findings</p> <p>Immunohistochemical RBM3 expression was examined in a tissue microarray with malignant and benign prostatic specimens from 88 patients treated with radical prostatectomy for localized disease. While rarely expressed in benign prostate gland epithelium, RBM3 was found to be up-regulated in prostate intraepithelial neoplasia and present in various fractions and intensities in invasive prostate cancer. High nuclear RBM3 expression was significantly associated with a prolonged time to biochemical recurrence (BCR) (HR 0.56, 95% CI: 0.34-0.93, <it>p </it>= 0.024) and clinical progression (HR 0.09, 95% CI: 0.01-0.71, <it>p = </it>0.021). These associations remained significant in multivariate analysis, adjusted for preoperative PSA level in blood, pathological Gleason score and presence or absence of extracapsular extension, seminal vesicle invasion and positive surgical margin (HR 0.41, 95% CI: 0.19-0.89, <it>p </it>= 0.024 for BCR and HR 0.06, 95% CI: 0.01-0.50, <it>p = </it>0.009 for clinical progression).</p> <p>Conclusion</p> <p>Our results demonstrate that high nuclear expression of RBM3 in prostate cancer is associated with a prolonged time to disease progression and, thus, a potential biomarker of favourable prognosis. The value of RBM3 for prognostication, treatment stratification and follow-up of prostate cancer patients should be further validated in larger studies.</p

    Suboptimal maternal nutrition, during early fetal liver development, promotes lipid accumulation in the liver of obese offspring

    Get PDF
    Maternal nutrition during the period of early organ development can modulate the offspring's ability to metabolise excess fat as young adults when exposed to an obesogenic environment. This study examined the hypothesis that exposing offspring to nutrient restriction coincident with early hepatogenesis would result in endocrine and metabolic adaptations that subsequently lead to increased ectopic lipid accumulation within the liver. Pregnant sheep were fed either 50 or 100% of total metabolisable energy requirements from 30 to 80 days gestation and 100% thereafter. At weaning, offspring were made obese, and at ∼1 year of age livers were sampled. Lipid infiltration and molecular indices of gluconeogenesis, lipid metabolism and mitochondrial function were measured. Although hepatic triglyceride accumulation was not affected by obesity per se, it was nearly doubled in obese offspring born to nutrient-restricted mothers. This adaptation was accompanied by elevated gene expression for peroxisome proliferator-activated receptor γ (PPARG) and its co-activator PGC1α, which may be indicative of changes in the rate of hepatic fatty acid oxidation. In contrast, maternal diet had no influence on the stimulatory effect of obesity on gene expression for a range of proteins involved in glucose metabolism and energy balance including glucokinase, glucocorticoid receptors and uncoupling protein 2. Similarly, although gene expressions for the insulin and IGF1 receptors were suppressed by obesity they were not influenced by the prenatal nutritional environment. In conclusion, excess hepatic lipid accumulation with juvenile obesity is promoted by suboptimal nutrition coincident with early development of the fetal liver

    BMP4 induction of trophoblast from mouse embryonic stem cells in defined culture conditions on laminin

    Get PDF
    Because mouse embryonic stem cells (mESCs) do not contribute to the formation of extraembryonic placenta when they are injected into blastocysts, it is believed that mESCs do not differentiate into trophoblast whereas human embryonic stem cells (hESCs) can express trophoblast markers when exposed to bone morphogenetic protein 4 (BMP4) in vitro. To test whether mESCs have the potential to differentiate into trophoblast, we assessed the effect of BMP4 on mESCs in a defined monolayer culture condition. The expression of trophoblast-specific transcription factors such as Cdx2, Dlx3, Esx1, Gata3, Hand1, Mash2, and Plx1 was specifically upregulated in the BMP4-treated differentiated cells, and these cells expressed trophoblast markers. These results suggest that BMP4 treatment in defined culture conditions enabled mESCs to differentiate into trophoblast. This differentiation was inhibited by serum or leukemia inhibitory factor, which are generally used for mESC culture. In addition, we studied the mechanism underlying BMP4-directed mESC differentiation into trophoblast. Our results showed that BMP4 activates the Smad pathway in mESCs inducing Cdx2 expression, which plays a crucial role in trophoblast differentiation, through the binding of Smad protein to the Cdx2 genomic enhancer sequence. Our findings imply that there is a common molecular mechanism underlying hESC and mESC differentiation into trophoblast

    Genome-Wide Association Study Identifies Risk Loci for Cluster Headache

    Get PDF
    OBJECTIVE: To identify susceptibility loci for cluster headache and obtain insights into relevant disease pathways. METHODS: We carried out a genome-wide association study, where 852 UK and 591 Swedish cluster headache cases were compared with 5,614 and 1,134 controls, respectively. Following quality control and imputation, single variant association testing was conducted using a logistic mixed model, for each cohort. The two cohorts were subsequently combined in a merged analysis. Downstream analyses, such as gene-set enrichment, functional variant annotation, prediction and pathway analyses, were performed. RESULTS: Initial independent analysis identified two replicable cluster headache susceptibility loci on chromosome 2. A merged analysis identified an additional locus on chromosome 1 and confirmed a locus significant in the UK analysis on chromosome 6, which overlaps with a previously known migraine locus. The lead single nucleotide polymorphisms were rs113658130 (p = 1.92 x 10-17 , OR [95%CI] = 1.51 [1.37-1.66]) and rs4519530 (p = 6.98 x 10-17 , OR = 1.47 [1.34-1.61]) on chromosome 2, rs12121134 on chromosome 1 (p = 1.66 x 10-8 , OR = 1.36 [1.22-1.52]) and rs11153082 (p = 1.85 x 10-8 , OR = 1.30 [1.19-1.42]) on chromosome 6. Downstream analyses implicated immunological processes in the pathogenesis of cluster headache. INTERPRETATION: We identified and replicated several genome-wide-significant associations supporting a genetic predisposition in cluster headache in a genome-wide association study involving 1,443 cases. Replication in larger independent cohorts combined with comprehensive phenotyping, in relation to e.g. treatment response and cluster headache subtypes, could provide unprecedented insights into genotype-phenotype correlations and the pathophysiological pathways underlying cluster headache

    Widespread Regulation of miRNA Biogenesis at the Dicer Step by the Cold-Inducible RNA-Binding Protein, RBM3

    Get PDF
    MicroRNAs (miRNAs) play critical roles in diverse cellular events through their effects on translation. Emerging data suggest that modulation of miRNA biogenesis at post-transcriptional steps by RNA-binding proteins is a key point of regulatory control over the expression of some miRNAs and the cellular processes they influence. However, the extent and conditions under which the miRNA pathway is amenable to regulation at posttranscriptional steps are poorly understood. Here we show that RBM3, a cold-inducible, developmentally regulated RNA-binding protein and putative protooncogene, is an essential regulator of miRNA biogenesis. Utilizing miRNA array, Northern blot, and PCR methods, we observed that over 60% of miRNAs detectable in a neuronal cell line were significantly downregulated by knockdown of RBM3. Conversely, for select miRNAs assayed by Northern blot, induction of RBM3 by overexpression or mild hypothermia increased their levels. Changes in miRNA expression were accompanied by changes in the levels of their ∼70 nt precursors, whereas primary transcript levels were unaffected. Mechanistic studies revealed that knockdown of RBM3 does not reduce Dicer activity or impede transport of pre-miRNAs into the cytoplasm. Rather, we find that RBM3 binds directly to ∼70 nt pre-miRNA intermediates and promotes / de-represses their ability as larger ribonucleoproteins (pre-miRNPs) to associate with active Dicer complexes. Our findings suggest that the processing of a majority of pre-miRNPs by Dicer is subject to an intrinsic inhibitory influence that is overcome by RBM3 expression. RBM3 may thus orchestrate changes in miRNA expression during hypothermia and other cellular stresses, and in the euthermic contexts of early development, differentiation, and oncogenesis where RBM3 expression is highly elevated. Additionally, our data suggest that temperature-dependent changes in miRNA expression mediated by RBM3 may contribute to the therapeutic effects of hypothermia, and are an important variable to consider in in vitro studies of translation-dependent cellular events

    A Novel Cold-Regulated Cold Shock Domain Containing Protein from Scallop Chlamys farreri with Nucleic Acid-Binding Activity

    Get PDF
    Background: The cold shock domain (CSD) containing proteins (CSDPs) are one group of the evolutionarily conserved nucleic acid-binding proteins widely distributed in bacteria, plants, animals, and involved in various cellular processes, including adaptation to low temperature, cellular growth, nutrient stress and stationary phase. Methodology: The cDNA of a novel CSDP was cloned from Zhikong scallop Chlamys farreri (designated as CfCSP) by expressed sequence tag (EST) analysis and rapid amplification of cDNA ends (RACE) approach. The full length cDNA of CfCSP was of 1735 bp containing a 927 bp open reading frame which encoded an N-terminal CSD with conserved nucleic acids binding motif and a C-terminal domain with four Arg-Gly-Gly (RGG) repeats. The CSD of CfCSP shared high homology with the CSDs from other CSDPs in vertebrate, invertebrate and bacteria. The mRNA transcripts of CfCSP were mainly detected in the tissue of adductor and also marginally detectable in gill, hepatopancreas, hemocytes, kidney, mantle and gonad of healthy scallop. The relative expression level of CfCSP was up-regulated significantly in adductor and hemocytes at 1 h and 24 h respectively after low temperature treatment (P,0.05). The recombinant CfCSP protein (rCfCSP) could bind ssDNA and in vitro transcribed mRNA, but it could not bind dsDNA. BX04, a cold sensitive Escherichia coli CSP quadruple-deletion mutant, was used to examine the cold adaptation ability of CfCSP. After incubation at 17uC for 120 h, the strain of BX04 containing the vector pINIII showed growth defect and failed to form colonies, while strain containing pINIII-CSPA or pINIII

    Joint Binding of OTX2 and MYC in Promotor Regions Is Associated with High Gene Expression in Medulloblastoma

    Get PDF
    Both OTX2 and MYC are important oncogenes in medulloblastoma, the most common malignant brain tumor in childhood. Much is known about MYC binding to promoter regions, but OTX2 binding is hardly investigated. We used ChIP-on-chip data to analyze the binding patterns of both transcription factors in D425 medulloblastoma cells. When combining the data for all promoter regions in the genome, OTX2 binding showed a remarkable bi-modal distribution pattern with peaks around −250 bp upstream and +650 bp downstream of the transcription start sites (TSSs). Indeed, 40.2% of all OTX2-bound TSSs had more than one significant OTX2-binding peak. This OTX2-binding pattern was very different from the TSS-centered single peak binding pattern observed for MYC and other known transcription factors. However, in individual promoter regions, OTX2 and MYC have a strong tendency to bind in proximity of each other. OTX2-binding sequences are depleted near TSSs in the genome, providing an explanation for the observed bi-modal distribution of OTX2 binding. This contrasts to the enrichment of E-box sequences at TSSs. Both OTX2 and MYC binding independently correlated with higher gene expression. Interestingly, genes of promoter regions with multiple OTX2 binding as well as MYC binding showed the highest expression levels in D425 cells and in primary medulloblastomas. Genes within this class of promoter regions were enriched for medulloblastoma and stem cell specific genes. Our data suggest an important functional interaction between OTX2 and MYC in regulating gene expression in medulloblastoma

    Cluster Headache Genomewide Association Study and Meta-Analysis Identifies Eight Loci and Implicates Smoking as Causal Risk Factor

    Get PDF
    Objective: The objective of this study was to aggregate data for the first genomewide association study meta-analysis of cluster headache, to identify genetic risk variants, and gain biological insights. Methods: A total of 4,777 cases (3,348 men and 1,429 women) with clinically diagnosed cluster headache were recruited from 10 European and 1 East Asian cohorts. We first performed an inverse-variance genomewide association meta-analysis of 4,043 cases and 21,729 controls of European ancestry. In a secondary trans-ancestry meta-analysis, we included 734 cases and 9,846 controls of East Asian ancestry. Candidate causal genes were prioritized by 5 complementary methods: expression quantitative trait loci, transcriptome-wide association, fine-mapping of causal gene sets, genetically driven DNA methylation, and effects on protein structure. Gene set and tissue enrichment analyses, genetic correlation, genetic risk score analysis, and Mendelian randomization were part of the downstream analyses. Results: The estimated single nucleotide polymorphism (SNP)-based heritability of cluster headache was 14.5%. We identified 9 independent signals in 7 genomewide significant loci in the primary meta-analysis, and one additional locus in the trans-ethnic meta-analysis. Five of the loci were previously known. The 20 genes prioritized as potentially causal for cluster headache showed enrichment to artery and brain tissue. Cluster headache was genetically correlated with cigarette smoking, risk-taking behavior, attention deficit hyperactivity disorder (ADHD), depression, and musculoskeletal pain. Mendelian randomization analysis indicated a causal effect of cigarette smoking intensity on cluster headache. Three of the identified loci were shared with migraine. Interpretation: This first genomewide association study meta-analysis gives clues to the biological basis of cluster headache and indicates that smoking is a causal risk factor. ANN NEUROL 2023
    corecore