101,048 research outputs found
Allozyme and mitochondrial DNA variability within the New Zealand damselfly genera Xanthocnemis, Austrolestes, and Ischnura (Odonata)
We collected larval damselflies from 17 sites in the North, South and Chatham Islands, and tested the hypotheses that: (1) genetic markers (e.g., allozymes, mtDNA) would successfully ÂŹdiscriminate taxa; and (2) the dispersal capabilities of adult damselflies would limit differentiation among locations. Four species from three genera were identified based on available taxonomic keys. Using 11 allozyme loci and the mitochondrial cytochrome c-oxidase subunit I (COI) gene, we confirmed that all taxa were clearly discernible. We found evidence for low to moderate differentiation among locations based on allozyme (mean FST = 0.09) and sequence (COI) divergence (<0.034). No obvious patterns with respect to geographic location were detected, although slight differences were found between New Zealandâs main islands (North Island, South Island) and the Chatham Islands for A. colensonis (sequence divergence 0.030â0.034). We also found limited intraspecific genetic variability based on allozyme data (Hexp < 0.06 in all cases). We conclude that levels of gene flow/dispersal on the main islands may have been sufficient to maintain the observed homogeneous population structure, and that genetic techniques, particularly the COI gene locus, will be a useful aid in future identifications
Optical vortex singularities and atomic circulation in evanescent waves
The total internal reflection of an optical beam with a phase singularity can generate evanescent light that displays a rotational character. At a metalized surface, in particular, field components extending into the vacuum region possess vortex properties in addition to surface plasmon features. These surface plasmonic vortices retain the phase singularity of the input light, also mapping its associated orbital angular momentum. In addition to a two-dimensional patterning on the surface, the strongly localized intensity distribution decays with distance perpendicular to the film surface. The detailed characteristics of these surface optical vortex structures depend on the incident beam parameters and the dielectric mismatch of the media. The static interference of the resulting surface vortices, achieved by using beams suitably configured to restrict lateral in-plane motion, can be shown to give rise to optical forces that produce interesting dynamical effects on atoms or small molecules trapped in the vicinity of the surface. As well as trapping within the surface plasmonic fields, model calculations reveal that the corresponding atomic trajectories will typically exhibit a variety of rotational and vibrational effects, significantly depending on the extent and sign of detuning from resonance
Learning Visual Question Answering by Bootstrapping Hard Attention
Attention mechanisms in biological perception are thought to select subsets
of perceptual information for more sophisticated processing which would be
prohibitive to perform on all sensory inputs. In computer vision, however,
there has been relatively little exploration of hard attention, where some
information is selectively ignored, in spite of the success of soft attention,
where information is re-weighted and aggregated, but never filtered out. Here,
we introduce a new approach for hard attention and find it achieves very
competitive performance on a recently-released visual question answering
datasets, equalling and in some cases surpassing similar soft attention
architectures while entirely ignoring some features. Even though the hard
attention mechanism is thought to be non-differentiable, we found that the
feature magnitudes correlate with semantic relevance, and provide a useful
signal for our mechanism's attentional selection criterion. Because hard
attention selects important features of the input information, it can also be
more efficient than analogous soft attention mechanisms. This is especially
important for recent approaches that use non-local pairwise operations, whereby
computational and memory costs are quadratic in the size of the set of
features.Comment: ECCV 201
Shearlets and Optimally Sparse Approximations
Multivariate functions are typically governed by anisotropic features such as
edges in images or shock fronts in solutions of transport-dominated equations.
One major goal both for the purpose of compression as well as for an efficient
analysis is the provision of optimally sparse approximations of such functions.
Recently, cartoon-like images were introduced in 2D and 3D as a suitable model
class, and approximation properties were measured by considering the decay rate
of the error of the best -term approximation. Shearlet systems are to
date the only representation system, which provide optimally sparse
approximations of this model class in 2D as well as 3D. Even more, in contrast
to all other directional representation systems, a theory for compactly
supported shearlet frames was derived which moreover also satisfy this
optimality benchmark. This chapter shall serve as an introduction to and a
survey about sparse approximations of cartoon-like images by band-limited and
also compactly supported shearlet frames as well as a reference for the
state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data",
Birkh\"auser-Springe
- âŠ