101,048 research outputs found

    FDTD channel modelling with time domain huygens' technique

    Get PDF

    Using patient-based measures to evaluate surgical outcomes: myths and realities

    Get PDF

    A slot antenna array with low mutual coupling for use on small mobile terminals

    Get PDF

    Allozyme and mitochondrial DNA variability within the New Zealand damselfly genera Xanthocnemis, Austrolestes, and Ischnura (Odonata)

    Get PDF
    We collected larval damselflies from 17 sites in the North, South and Chatham Islands, and tested the hypotheses that: (1) genetic markers (e.g., allozymes, mtDNA) would successfully ¬discriminate taxa; and (2) the dispersal capabilities of adult damselflies would limit differentiation among locations. Four species from three genera were identified based on available taxonomic keys. Using 11 allozyme loci and the mitochondrial cytochrome c-oxidase subunit I (COI) gene, we confirmed that all taxa were clearly discernible. We found evidence for low to moderate differentiation among locations based on allozyme (mean FST = 0.09) and sequence (COI) divergence (<0.034). No obvious patterns with respect to geographic location were detected, although slight differences were found between New Zealand’s main islands (North Island, South Island) and the Chatham Islands for A. colensonis (sequence divergence 0.030–0.034). We also found limited intraspecific genetic variability based on allozyme data (Hexp < 0.06 in all cases). We conclude that levels of gene flow/dispersal on the main islands may have been sufficient to maintain the observed homogeneous population structure, and that genetic techniques, particularly the COI gene locus, will be a useful aid in future identifications

    Optical vortex singularities and atomic circulation in evanescent waves

    Get PDF
    The total internal reflection of an optical beam with a phase singularity can generate evanescent light that displays a rotational character. At a metalized surface, in particular, field components extending into the vacuum region possess vortex properties in addition to surface plasmon features. These surface plasmonic vortices retain the phase singularity of the input light, also mapping its associated orbital angular momentum. In addition to a two-dimensional patterning on the surface, the strongly localized intensity distribution decays with distance perpendicular to the film surface. The detailed characteristics of these surface optical vortex structures depend on the incident beam parameters and the dielectric mismatch of the media. The static interference of the resulting surface vortices, achieved by using beams suitably configured to restrict lateral in-plane motion, can be shown to give rise to optical forces that produce interesting dynamical effects on atoms or small molecules trapped in the vicinity of the surface. As well as trapping within the surface plasmonic fields, model calculations reveal that the corresponding atomic trajectories will typically exhibit a variety of rotational and vibrational effects, significantly depending on the extent and sign of detuning from resonance

    Learning Visual Question Answering by Bootstrapping Hard Attention

    Full text link
    Attention mechanisms in biological perception are thought to select subsets of perceptual information for more sophisticated processing which would be prohibitive to perform on all sensory inputs. In computer vision, however, there has been relatively little exploration of hard attention, where some information is selectively ignored, in spite of the success of soft attention, where information is re-weighted and aggregated, but never filtered out. Here, we introduce a new approach for hard attention and find it achieves very competitive performance on a recently-released visual question answering datasets, equalling and in some cases surpassing similar soft attention architectures while entirely ignoring some features. Even though the hard attention mechanism is thought to be non-differentiable, we found that the feature magnitudes correlate with semantic relevance, and provide a useful signal for our mechanism's attentional selection criterion. Because hard attention selects important features of the input information, it can also be more efficient than analogous soft attention mechanisms. This is especially important for recent approaches that use non-local pairwise operations, whereby computational and memory costs are quadratic in the size of the set of features.Comment: ECCV 201

    Shearlets and Optimally Sparse Approximations

    Full text link
    Multivariate functions are typically governed by anisotropic features such as edges in images or shock fronts in solutions of transport-dominated equations. One major goal both for the purpose of compression as well as for an efficient analysis is the provision of optimally sparse approximations of such functions. Recently, cartoon-like images were introduced in 2D and 3D as a suitable model class, and approximation properties were measured by considering the decay rate of the L2L^2 error of the best NN-term approximation. Shearlet systems are to date the only representation system, which provide optimally sparse approximations of this model class in 2D as well as 3D. Even more, in contrast to all other directional representation systems, a theory for compactly supported shearlet frames was derived which moreover also satisfy this optimality benchmark. This chapter shall serve as an introduction to and a survey about sparse approximations of cartoon-like images by band-limited and also compactly supported shearlet frames as well as a reference for the state-of-the-art of this research field.Comment: in "Shearlets: Multiscale Analysis for Multivariate Data", Birkh\"auser-Springe
    • 

    corecore