6,014 research outputs found

    Methanol as a tracer of fundamental constants

    Full text link
    The methanol molecule CH3OH has a complex microwave spectrum with a large number of very strong lines. This spectrum includes purely rotational transitions as well as transitions with contributions of the internal degree of freedom associated with the hindered rotation of the OH group. The latter takes place due to the tunneling of hydrogen through the potential barriers between three equivalent potential minima. Such transitions are highly sensitive to changes in the electron-to-proton mass ratio, mu = m_e/m_p, and have different responses to mu-variations. The highest sensitivity is found for the mixed rotation-tunneling transitions at low frequencies. Observing methanol lines provides more stringent limits on the hypothetical variation of mu than ammonia observation with the same velocity resolution. We show that the best quality radio astronomical data on methanol maser lines constrain the variability of mu in the Milky Way at the level of |Delta mu/mu| < 28x10^{-9} (1sigma) which is in line with the previously obtained ammonia result, |Delta mu/mu| < 29x10^{-9} (1\sigma). This estimate can be further improved if the rest frequencies of the CH3OH microwave lines will be measured more accurately.Comment: 7 pages, 1 table, 1 figure. Accepted for publication in Ap

    Sensitivity of the isotopologues of hydronium to variation of the electron-to-proton mass ratio

    Full text link
    We study the sensitivity of the microwave and submillimeter transitions of the isotopologues of hydronium to the variation of the electron-to-proton mass ratio mu. These sensitivities are enhanced for the low frequency mixed inversion-rotational transitions. The lowest frequency transition (6.6 GHz) takes place for isotopologue H2DO+ and respective sensitivity to mu-variation is close to 200. This is about two orders of magnitude larger than the sensitivity of the inversion transition in ammonia, which is currently used for the search of mu-variation in astrophysics.Comment: 6 pages; v2: references correcte

    Electric dipole moment enhancement factor of thallium

    Full text link
    The goal of this work is to resolve the present controversy in the value of the EDM enhancement factor of Tl. We have carried out several calculations by different high-precision methods, studied previously omitted corrections, as well as tested our methodology on other parity conserving quantities. We find the EDM enhancement factor of Tl to be equal to -573(20). This value is 20% larger than the recently published result of Nataraj et al. [Phys. Rev. Lett. 106, 200403 (2011)], but agrees very well with several earlier results.Comment: 5 pages; v2: link to supplemental material adde

    Maxwell-Drude-Bloch dissipative few-cycle optical solitons

    Get PDF
    We study the propagation of few-cycle pulses in two-component medium consisting of nonlinear amplifying and absorbing two-level centers embedded into a linear and conductive host material. First we present a linear theory of propagation of short pulses in a purely conductive material, and demonstrate the diffusive behavior for the evolution of the low-frequency components of the magnetic field in the case of relatively strong conductivity. Then, numerical simulations carried out in the frame of the full nonlinear theory involving the Maxwell-Drude-Bloch model reveal the stable creation and propagation of few-cycle dissipative solitons under excitation by incident femtosecond optical pulses of relatively high energies. The broadband losses that are introduced by the medium conductivity represent the main stabilization mechanism for the dissipative few-cycle solitons.Comment: 38 pages, 10 figures. submitted to Physical Review

    Difference between radiative transition rates in atoms and antiatoms

    Full text link
    We demonstrate that CP violation results in a difference of the partial decay rates of atoms and antiatoms. The magnitude of this difference is estimated.Comment: 5 pages, 5 figure

    Enhancement of the electric dipole moment of the electron in PbO

    Full text link
    The a(1) state of PbO can be used to measure the electric dipole moment of the electron d_e. We discuss a semiempirical model for this state, which yields an estimate of the effective electric field on the valence electrons in PbO. Our final result is an upper limit on the measurable energy shift, which is significantly larger than was anticipated earlier: 2Wdde2.4×1025Hz[deecm] 2|W_d|d_e \ge 2.4\times 10^{25} \textrm{Hz} [ \frac{d_e}{e \textrm{cm}} ].Comment: 4 pages, revtex4, no figures, submitted to PR

    Resources of polarimetric sensitivity in spin noise spectroscopy

    Full text link
    We attract attention to the fact that the ultimate (shot-noise-limited) polarimetric sensitivity can be enhanced by orders of magnitude leaving the photon flux incident onto the photodetector on the same low level. This opportunity is of crucial importance for present-day spin noise spectroscopy, where a direct increase of sensitivity by increasing the probe beam power is strongly restricted by the admissible input power of the broadband photodetectors. The gain in sensitivity is achieved by replacing the 45-deg polarization geometry commonly used in conventional schemes with balanced detectors by geometries with stronger polarization extinction. The efficiency of these high-extinction polarization geometries with enhancement of the detected signal by more than an order of magnitude is demonstrated by measurements of the spin noise spectra of bulk n:GaAs in the spectral range 835-918 nm. It is shown that the inevitable growth of the probe beam power with the sensitivity gain makes spin noise spectroscopy much more perturbative, but, at the same time, opens up fresh opportunities for studying nonlinear interactions of strong light fields with spin ensembles.Comment: 8 pages, 9 figure

    Transport properties of a 3D topological insulator based on a strained high mobility HgTe film

    Get PDF
    We investigated the magnetotransport properties of strained, 80nm thick HgTe layers featuring a high mobility of mu =4x10^5 cm^2/Vs. By means of a top gate the Fermi-energy is tuned from the valence band through the Dirac type surface states into the conduction band. Magnetotransport measurements allow to disentangle the different contributions of conduction band electrons, holes and Dirac electrons to the conductivity. The results are are in line with previous claims that strained HgTe is a topological insulator with a bulk gap of ~15meV and gapless surface states.Comment: 11 pages (4 pages of main text, 6 pages of supplemental materials), 8 figure
    corecore