6,014 research outputs found
Methanol as a tracer of fundamental constants
The methanol molecule CH3OH has a complex microwave spectrum with a large
number of very strong lines. This spectrum includes purely rotational
transitions as well as transitions with contributions of the internal degree of
freedom associated with the hindered rotation of the OH group. The latter takes
place due to the tunneling of hydrogen through the potential barriers between
three equivalent potential minima. Such transitions are highly sensitive to
changes in the electron-to-proton mass ratio, mu = m_e/m_p, and have different
responses to mu-variations. The highest sensitivity is found for the mixed
rotation-tunneling transitions at low frequencies. Observing methanol lines
provides more stringent limits on the hypothetical variation of mu than ammonia
observation with the same velocity resolution. We show that the best quality
radio astronomical data on methanol maser lines constrain the variability of mu
in the Milky Way at the level of |Delta mu/mu| < 28x10^{-9} (1sigma) which is
in line with the previously obtained ammonia result, |Delta mu/mu| < 29x10^{-9}
(1\sigma). This estimate can be further improved if the rest frequencies of the
CH3OH microwave lines will be measured more accurately.Comment: 7 pages, 1 table, 1 figure. Accepted for publication in Ap
Sensitivity of the isotopologues of hydronium to variation of the electron-to-proton mass ratio
We study the sensitivity of the microwave and submillimeter transitions of
the isotopologues of hydronium to the variation of the electron-to-proton mass
ratio mu. These sensitivities are enhanced for the low frequency mixed
inversion-rotational transitions. The lowest frequency transition (6.6 GHz)
takes place for isotopologue H2DO+ and respective sensitivity to mu-variation
is close to 200. This is about two orders of magnitude larger than the
sensitivity of the inversion transition in ammonia, which is currently used for
the search of mu-variation in astrophysics.Comment: 6 pages; v2: references correcte
Electric dipole moment enhancement factor of thallium
The goal of this work is to resolve the present controversy in the value of
the EDM enhancement factor of Tl. We have carried out several calculations by
different high-precision methods, studied previously omitted corrections, as
well as tested our methodology on other parity conserving quantities. We find
the EDM enhancement factor of Tl to be equal to -573(20). This value is 20%
larger than the recently published result of Nataraj et al. [Phys. Rev. Lett.
106, 200403 (2011)], but agrees very well with several earlier results.Comment: 5 pages; v2: link to supplemental material adde
Maxwell-Drude-Bloch dissipative few-cycle optical solitons
We study the propagation of few-cycle pulses in two-component medium
consisting of nonlinear amplifying and absorbing two-level centers embedded
into a linear and conductive host material. First we present a linear theory of
propagation of short pulses in a purely conductive material, and demonstrate
the diffusive behavior for the evolution of the low-frequency components of the
magnetic field in the case of relatively strong conductivity. Then, numerical
simulations carried out in the frame of the full nonlinear theory involving the
Maxwell-Drude-Bloch model reveal the stable creation and propagation of
few-cycle dissipative solitons under excitation by incident femtosecond optical
pulses of relatively high energies. The broadband losses that are introduced by
the medium conductivity represent the main stabilization mechanism for the
dissipative few-cycle solitons.Comment: 38 pages, 10 figures. submitted to Physical Review
Difference between radiative transition rates in atoms and antiatoms
We demonstrate that CP violation results in a difference of the partial decay
rates of atoms and antiatoms. The magnitude of this difference is estimated.Comment: 5 pages, 5 figure
Enhancement of the electric dipole moment of the electron in PbO
The a(1) state of PbO can be used to measure the electric dipole moment of
the electron d_e. We discuss a semiempirical model for this state, which yields
an estimate of the effective electric field on the valence electrons in PbO.
Our final result is an upper limit on the measurable energy shift, which is
significantly larger than was anticipated earlier: .Comment: 4 pages, revtex4, no figures, submitted to PR
Resources of polarimetric sensitivity in spin noise spectroscopy
We attract attention to the fact that the ultimate (shot-noise-limited)
polarimetric sensitivity can be enhanced by orders of magnitude leaving the
photon flux incident onto the photodetector on the same low level. This
opportunity is of crucial importance for present-day spin noise spectroscopy,
where a direct increase of sensitivity by increasing the probe beam power is
strongly restricted by the admissible input power of the broadband
photodetectors. The gain in sensitivity is achieved by replacing the 45-deg
polarization geometry commonly used in conventional schemes with balanced
detectors by geometries with stronger polarization extinction. The efficiency
of these high-extinction polarization geometries with enhancement of the
detected signal by more than an order of magnitude is demonstrated by
measurements of the spin noise spectra of bulk n:GaAs in the spectral range
835-918 nm. It is shown that the inevitable growth of the probe beam power with
the sensitivity gain makes spin noise spectroscopy much more perturbative, but,
at the same time, opens up fresh opportunities for studying nonlinear
interactions of strong light fields with spin ensembles.Comment: 8 pages, 9 figure
Transport properties of a 3D topological insulator based on a strained high mobility HgTe film
We investigated the magnetotransport properties of strained, 80nm thick HgTe
layers featuring a high mobility of mu =4x10^5 cm^2/Vs. By means of a top gate
the Fermi-energy is tuned from the valence band through the Dirac type surface
states into the conduction band. Magnetotransport measurements allow to
disentangle the different contributions of conduction band electrons, holes and
Dirac electrons to the conductivity. The results are are in line with previous
claims that strained HgTe is a topological insulator with a bulk gap of ~15meV
and gapless surface states.Comment: 11 pages (4 pages of main text, 6 pages of supplemental materials), 8
figure
- …
