5,704 research outputs found

    Nanoscale Weibull Statistics

    Full text link
    In this paper a modification of the classical Weibull Statistics is developed for nanoscale applications. It is called Nanoscale Weibull Statistics. A comparison between Nanoscale and classical Weibull Statistics applied to experimental results on fracture strength of carbon nanotubes clearly shows the effectiveness of the proposed modification. A Weibull's modulus around 3 is, for the first time, deduced for nanotubes. The approach can treat (also) a small number of structural defects, as required for nearly defect free structures (e.g., nanotubes) as well as a quantized crack propagation (e.g., as a consequence of the discrete nature of matter), allowing to remove the paradoxes caused by the presence of stress-intensifications

    Rhetoric in the language of real estate marketing

    Get PDF
    “Des. Res.”, “rarely available”, “viewing essential” – these are all part of the peculiar parlance of housing advertisements which contain a heady mix of euphemism, hyperbole and superlative. Of interest is whether the selling agent’s penchant for rhetoric is spatially uniform or whether there are variations across the urban system. We are also interested in how the use of superlatives varies over the market cycle and over the selling season. For example, are estate agents more inclined to use hyperbole when the market is buoyant or when it is flat, and does it matter whether a house is marketed in the summer or winter? This paper attempts to answer these questions by applying textual analysis to a unique dataset of 49,926 records of real estate transactions in the Strathclyde conurbation over the period 1999 to 2006. The analysis opens up a new avenue of research into the use of real estate rhetoric and its interaction with agency behaviour and market dynamics

    Implementation of NMR quantum computation with para-hydrogen derived high purity quantum states

    Full text link
    We demonstrate the first implementation of a quantum algorithm on a liquid state nuclear magnetic resonance (NMR) quantum computer using almost pure states. This was achieved using a two qubit device where the initial state is an almost pure singlet nuclear spin state of a pair of 1H nuclei arising from a chemical reaction involving para-hydrogen. We have implemented Deutsch's algorithm for distinguishing between constant and balanced functions with a single query.Comment: 7 pages RevTex including 6 figures. Figures 4-6 are low quality to save space. Submitted to Phys Rev

    Electrostatics of ions inside the nanopores and trans-membrane channels

    Full text link
    A model of a finite cylindrical ion channel through a phospholipid membrane of width LL separating two electrolyte reservoirs is studied. Analytical solution of the Poisson equation is obtained for an arbitrary distribution of ions inside the trans-membrane pore. The solution is asymptotically exact in the limit of large ionic strength of electrolyte on the two sides of membrane. However, even for physiological concentrations of electrolyte, the electrostatic barrier sizes found using the theory are in excellent agreement with the numerical solution of the Poisson equation. The analytical solution is used to calculate the electrostatic potential energy profiles for pores containing charged protein residues. Availability of a semi-exact interionic potential should greatly facilitate the study of ionic transport through nanopores and ion channels

    MLP: a MATLAB toolbox for rapid and reliable auditory threshold estimation

    Get PDF
    In this paper, we present MLP, a MATLAB toolbox enabling auditory thresholds estimation via the adaptive Maximum Likelihood procedure proposed by David Green (1990, 1993). This adaptive procedure is particularly appealing for those psychologists that need to estimate thresholds with a good degree of accuracy and in a short time. Together with a description of the toolbox, the current text provides an introduction to the threshold estimation theory and a theoretical explanation of the maximum likelihood adaptive procedure. MLP comes with a graphical interface and it is provided with several built-in, classic psychoacoustics experiments ready to use at a mouse click

    Information dynamics: patterns of expectation and surprise in the perception of music

    Get PDF
    This is a postprint of an article submitted for consideration in Connection Science © 2009 [copyright Taylor & Francis]; Connection Science is available online at:http://www.tandfonline.com/openurl?genre=article&issn=0954-0091&volume=21&issue=2-3&spage=8

    Protein structures and optimal folding emerging from a geometrical variational principle

    Full text link
    Novel numerical techniques, validated by an analysis of barnase and chymotrypsin inhibitor, are used to elucidate the paramount role played by the geometry of the protein backbone in steering the folding to the correct native state. It is found that, irrespective of the sequence, the native state of a protein has exceedingly large number of conformations with a given amount of structural overlap compared to other compact artificial backbones; moreover the conformational entropies of unrelated proteins of the same length are nearly equal at any given stage of folding. These results are suggestive of an extremality principle underlying protein evolution, which, in turn, is shown to be associated with the emergence of secondary structures.Comment: Revtex, 5 pages, 5 postscript figure

    Robust Ising Gates for Practical Quantum Computation

    Full text link
    I describe the use of techniques based on composite rotations to combat systematic errors in controlled phase gates, which form the basis of two qubit quantum logic gates. Although developed and described within the context of Nuclear Magnetic Resonanace (NMR) quantum computing these sequences should be applicable to any implementation of quantum computation based on Ising couplings. In combination with existing single qubit gates this provides a universal set of robust quantum logic gates.Comment: 3 Pages RevTex4 including 2 figures. Will submit to PR

    NMR Techniques for Quantum Control and Computation

    Full text link
    Fifty years of developments in nuclear magnetic resonance (NMR) have resulted in an unrivaled degree of control of the dynamics of coupled two-level quantum systems. This coherent control of nuclear spin dynamics has recently been taken to a new level, motivated by the interest in quantum information processing. NMR has been the workhorse for the experimental implementation of quantum protocols, allowing exquisite control of systems up to seven qubits in size. Here, we survey and summarize a broad variety of pulse control and tomographic techniques which have been developed for and used in NMR quantum computation. Many of these will be useful in other quantum systems now being considered for implementation of quantum information processing tasks.Comment: 33 pages, accepted for publication in Rev. Mod. Phys., added subsection on T_{1,\rho} (V.A.6) and on time-optimal pulse sequences (III.A.6), redid some figures, made many small changes, expanded reference
    • 

    corecore