16,162 research outputs found

    The planetary nebula IC 5148 and its ionized halo

    Full text link
    Many round or nearly roundish Planetary Nebulae (PNe) show multiple shells and halo structures during their evolutionary stage near the maximum temperature of their central star. Controversial debate is currently ongoing if these structures are recombination halos, as suggested by hydrodynamic modelling efforts, or ionized material. Recently we discovered a halo with even somewhat unusual structures around the sparsely studied PN IC~5148 and present for the first time spectroscopy going out to the halo of such a PN.} resolution spectroscopy is used to derive dust chemistry and mineralogy. We investigate the spatial distribution of material and its ionization state from the center of the nebula up to the very outskirts of the halo. We obtained long-slit low resolution spectroscopy (FORS2@VLT) of the nebula in two position angles, which we used to investigate the nebular structure and its halo in the optical range from 450 to 880\,nm. In addition we used medium resolution spectra taken with X-SHOOTER@VLT ranging from 320 nm to 2.4 mu to derive atmospheric parameters for the central star. We obtained the distance and position in the Galaxy from various methods combined with GAIA DR2 data. We also applied Cloudy models to the nebula in order to derive physical parameters of the various regions. We obtained spatially resolved structures and detailed descriptions of the outrunning shock front and a set of unusual halo structures denoted to further shock. The halo structures appears clearly as hot ionized material. Furthermore we derived a reliable photometric value for the central star at a GAIA distance of D=1.3kpc. Considering the large distance z=1.0z=1.0\,kpc from the galactic plane together to its non-circular motion in the galaxy and, a metallicity only slightly below that of typical disk PNe, most likely IC 5148 originates from a thick disk population star.Comment: 12 pages, 17 figures, accepted for publication in Astronomy & Astrophysic

    Absence of structural correlations of magnetic defects in heavy fermion LiV2O4

    Full text link
    Magnetic defects have pronounced effects on the magnetic properties of the face-centered cubic compound LiV2O4. The magnetic defects arise from crystal defects present within the normal spinel structure. High-energy x-ray diffraction studies were performed on LiV2O4 single crystals to search for superstructure peaks or any other evidence of periodicity in the arrangement of the crystal defects present in the lattice. Entire reciprocal lattice planes are mapped out with help of synchrotron radiation. No noticeable differences in the x-ray diffraction data between a crystal with high magnetic defect concentration and a crystal with low magnetic defect concentration have been found. This indicates the absence of any long-range periodicity or short-range correlations in the arrangements of the crystal/magnetic defects.Comment: 6 pages, 4 figure

    Organic Haze as a Biosignature in Anoxic Earth-like Atmospheres

    Full text link
    Early Earth may have hosted a biologically-mediated global organic haze during the Archean eon (3.8-2.5 billion years ago). This haze would have significantly impacted multiple aspects of our planet, including its potential for habitability and its spectral appearance. Here, we model worlds with Archean-like levels of carbon dioxide orbiting the ancient sun and an M4V dwarf (GJ 876) and show that organic haze formation requires methane fluxes consistent with estimated Earth-like biological production rates. On planets with high fluxes of biogenic organic sulfur gases (CS2, OCS, CH3SH, and CH3SCH3), photochemistry involving these gases can drive haze formation at lower CH4/CO2 ratios than methane photochemistry alone. For a planet orbiting the sun, at 30x the modern organic sulfur gas flux, haze forms at a CH4/CO2 ratio 20% lower than at 1x the modern organic sulfur flux. For a planet orbiting the M4V star, the impact of organic sulfur gases is more pronounced: at 1x the modern Earth organic sulfur flux, a substantial haze forms at CH4/CO2 ~ 0.2, but at 30x the organic sulfur flux, the CH4/CO2 ratio needed to form haze decreases by a full order of magnitude. Detection of haze at an anomalously low CH4/CO2 ratio could suggest the influence of these biogenic sulfur gases, and therefore imply biological activity on an exoplanet. When these organic sulfur gases are not readily detectable in the spectrum of an Earth-like exoplanet, the thick organic haze they can help produce creates a very strong absorption feature at UV-blue wavelengths detectable in reflected light at a spectral resolution as low as 10. In direct imaging, constraining CH4 and CO2 concentrations will require higher spectral resolution, and R > 170 is needed to accurately resolve the structure of the CO2 feature at 1.57 {\mu}m, likely, the most accessible CO2 feature on an Archean-like exoplanet.Comment: accepted for publication in Astrobiolog

    Possible Implications of Asymmetric Fermionic Dark Matter for Neutron Stars

    Get PDF
    We consider the implications of fermionic asymmetric dark matter for a "mixed neutron star" composed of ordinary baryons and dark fermions. We find examples, where for a certain range of dark fermion mass -- when it is less than that of ordinary baryons -- such systems can reach higher masses than the maximal values allowed for ordinary ("pure") neutron stars. This is shown both within a simplified, heuristic Newtonian analytic framework with non-interacting particles and via a general relativistic numerical calculation, under certain assumptions for the dark matter equation of state. Our work applies to various dark fermion models such as mirror matter models and to other models where the dark fermions have self interactions.Comment: 20 pages, 6 figure

    Improved Astrometry and Photometry for the Luyten Catalog. I. Bright Stars

    Get PDF
    We outline the construction of an updated version of the New Luyten Two-Tenths (NLTT) catalog of high proper motion stars, which will contain improved astrometry and photometry for the vast majority of the ~59,000 stars in NLTT. The bright end is constructed by matching NLTT stars to Hipparcos, Tycho-2, and Starnet; the faint end by matching to USNO-A and 2MASS. In this first paper, we detail the bright-end matching procedure. We show that for the majority of stars in his catalog, Luyten measured positions accurate to 1" even though he recorded his results much more coarsely. However, there is a long tail of position errors, with one error as large as 11 deg. Proper-motion errors for the stars with small position errors are 24 mas/yr (1 sigma) but deteriorate to 34 mas/yr for stars with inferior positions. NLTT is virtually 100% complete for V15 deg, but completeness in this magnitude range falls to about 75% at the Galactic plane. Incompleteness near the plane is not uniform, but is rather concentrated in the interval -80<l<20, where the Milky Way is brightest.Comment: Submitted to ApJ, 28 pages including 7 figure

    Current-induced spin polarization in InGaAs and GaAs epilayers with varying doping densities

    Full text link
    The current-induced spin polarization and momentum-dependent spin-orbit field were measured in Inx_{x}Ga1−x_{1-x}As epilayers with varying indium concentrations and silicon doping densities. Samples with higher indium concentrations and carrier concentrations and lower mobilities were found to have larger electrical spin generation efficiencies. Furthermore, current-induced spin polarization was detected in GaAs epilayers despite the absence of measurable spin-orbit fields, indicating that the extrinsic contributions to the spin polarization mechanism must be considered. Theoretical calculations based on a model that includes extrinsic contributions to the spin dephasing and the spin Hall effect, in addition to the intrinsic Rashba and Dresselhaus spin-orbit coupling, are found to qualitatively agree with the experimental results.Comment: 16 pages, 8 figure
    • …
    corecore