21 research outputs found
Hypoxia Disruption of Vertebrate CNS Pathfinding through EphrinB2 Is Rescued by Magnesium
The mechanisms of hypoxic injury to the developing human brain are poorly understood, despite being a major cause of chronic neurodevelopmental impairments. Recent work in the invertebrate Caenorhabditis elegans has shown that hypoxia causes discrete axon pathfinding errors in certain interneurons and motorneurons. However, it is unknown whether developmental hypoxia would have similar effects in a vertebrate nervous system. We have found that developmental hypoxic injury disrupts pathfinding of forebrain neurons in zebrafish (Danio rerio), leading to errors in which commissural axons fail to cross the midline. The pathfinding defects result from activation of the hypoxia-inducible transcription factor (hif1) pathway and are mimicked by chemical inducers of the hif1 pathway or by expression of constitutively active hif1α. Further, we found that blocking transcriptional activation by hif1α helped prevent the guidance defects. We identified ephrinB2a as a target of hif1 pathway activation, showed that knock-down of ephrinB2a rescued the guidance errors, and showed that the receptor ephA4a is expressed in a pattern complementary to the misrouting axons. By targeting a constitutively active form of ephrinB2a to specific neurons, we found that ephrinB2a mediates the pathfinding errors via a reverse-signaling mechanism. Finally, magnesium sulfate, used to improve neurodevelopmental outcomes in preterm births, protects against pathfinding errors by preventing upregulation of ephrinB2a. These results demonstrate that evolutionarily conserved genetic pathways regulate connectivity changes in the CNS in response to hypoxia, and they support a potential neuroprotective role for magnesium
Theories of schizophrenia: a genetic-inflammatory-vascular synthesis
BACKGROUND: Schizophrenia, a relatively common psychiatric syndrome, affects virtually all brain functions yet has eluded explanation for more than 100 years. Whether by developmental and/or degenerative processes, abnormalities of neurons and their synaptic connections have been the recent focus of attention. However, our inability to fathom the pathophysiology of schizophrenia forces us to challenge our theoretical models and beliefs. A search for a more satisfying model to explain aspects of schizophrenia uncovers clues pointing to genetically mediated CNS microvascular inflammatory disease. DISCUSSION: A vascular component to a theory of schizophrenia posits that the physiologic abnormalities leading to illness involve disruption of the exquisitely precise regulation of the delivery of energy and oxygen required for normal brain function. The theory further proposes that abnormalities of CNS metabolism arise because genetically modulated inflammatory reactions damage the microvascular system of the brain in reaction to environmental agents, including infections, hypoxia, and physical trauma. Damage may accumulate with repeated exposure to triggering agents resulting in exacerbation and deterioration, or healing with their removal. There are clear examples of genetic polymorphisms in inflammatory regulators leading to exaggerated inflammatory responses. There is also ample evidence that inflammatory vascular disease of the brain can lead to psychosis, often waxing and waning, and exhibiting a fluctuating course, as seen in schizophrenia. Disturbances of CNS blood flow have repeatedly been observed in people with schizophrenia using old and new technologies. To account for the myriad of behavioral and other curious findings in schizophrenia such as minor physical anomalies, or reported decreased rates of rheumatoid arthritis and highly visible nail fold capillaries, we would have to evoke a process that is systemic such as the vascular and immune/inflammatory systems. SUMMARY: A vascular-inflammatory theory of schizophrenia brings together environmental and genetic factors in a way that can explain the diversity of symptoms and outcomes observed. If these ideas are confirmed, they would lead in new directions for treatments or preventions by avoiding inducers of inflammation or by way of inflammatory modulating agents, thus preventing exaggerated inflammation and consequent triggering of a psychotic episode in genetically predisposed persons
The VBP and a1/EBP leucine zipper factors bind overlapping subsets of avian retroviral long terminal repeat CCAAT/enhancer elements
Two long terminal repeat (LTR) enhancer-binding proteins which may regulate high rates of avian leukosis virus (ALV) LTR-enhanced c-myc transcription during bursal lymphomagenesis have been identified (A. Ruddell, M. Linial, and M. Groudine, Mol. Cell. Biol. 9:5660-5668, 1989). The genes encoding the a1/EBP and a3/EBP binding factors were cloned by expression screening of a lambda gt11 cDNA library from chicken bursal lymphoma cells. The a1/EBP cDNA encodes a novel leucine zipper transcription factor (W. Bowers and A. Ruddell, J. Virol. 66:6578-6586, 1992). The partial a3/EBP cDNA clone encodes amino acids 84 to 313 of vitellogenin gene-binding protein (VBP), a leucine zipper factor that binds the avian vitellogenin II gene promoter (S. Iyer, D. Davis, and J. Burch, Mol. Cell. Biol. 11:4863-4875, 1991). Multiple VBP mRNAs are expressed in B cells in a pattern identical to that previously observed for VBP in other cell types. The LTR-binding activities of VBP, a1/EBP, and B-cell nuclear extract protein were compared and mapped by gel shift, DNase I footprinting, and methylation interference assays. The purified VBP and a1/EBP bacterial fusion proteins bind overlapping but distinct subsets of CCAAT/enhancer elements in the closely related ALV and Rous sarcoma virus (RSV) LTR enhancers. Protein binding to these CCAAT/enhancer elements accounts for most of the labile LTR enhancer-binding activity observed in B-cell nuclear extracts. VBP and a1/EBP could mediate the high rates of ALV and RSV LTR-enhanced transcription in bursal lymphoma cells and many other cell types.</jats:p
VBP and RelA regulate avian leukosis virus long terminal repeat-enhanced transcription in B cells
The avian leukosis virus (ALV) long terminal repeat (LTR) contains a compact transcription enhancer that is active in many cell types. A major feature of the enhancer is multiple CCAAT/enhancer element motifs that could be important for the strong transcriptional activity of this unit. The contributions of the three CCAAT/enhancer elements to LTR function were examined in B cells, as this cell type is targeted for ALV tumor induction following integration of LTR sequences next to the c-myc proto-oncogene. One CCAAT/enhancer element, termed a3, was found to be the most critical for LTR enhancement in transiently transfected B lymphoma cells, while in chicken embryo fibroblasts all three elements contributed equally to enhancement. Gel shift assays demonstrated that vitellogenin gene-binding protein (VBP), a member of the PAR subfamily of C/EBP factors, is a major component of the nuclear proteins binding to the a3 CCAAT/enhancer element. VBP activated transcription through the a3 CCAAT/enhancer element, supporting the idea that VBP is important for LTR enhancement in B cells. A member of the Rel family of proteins was also identified as a component of the a3 protein binding complex in B cells. Gel shift and immunoprecipitation assays indicated that this factor is RelA. Gel shift assays demonstrated that while RelA does not bind directly to the LTR CCAAT/enhancer elements, it does interact with VBP to potentiate VBP DNA binding activity. The synergistic interaction of VBP and RelA increased CCAAT/enhancer element-mediated transcription, indicating that both factors may be important for viral LTR regulation and also for expression of many cellular genes.</jats:p
Extensive posttranscriptional deletion of the coding sequences for part of nucleotide-binding fold 1 in respiratory epithelial mRNA transcripts of the cystic fibrosis transmembrane conductance regulator gene is not associated with the clinical manifestations of cystic fibrosis.
Cystic fibrosis (CF) is a recessive hereditary disorder, requiring both parental cystic fibrosis conductance transmembrane regulator (CFTR) genes to carry mutations for clinical disease to manifest, i.e., only 50% of normal CFTR gene expression is required to maintain a normal phenotype. To help define the minimum amount of normal CFTR gene expression necessary to maintain normalcy, we have capitalized on our prior observation (Chu, C.-S., B. C. Trapnell, J. J. Murtagh, Jr., J. Moss, W. Dalemans, S. Jallat, A. Mercenier, A. Pavirani, J.-P. Lecocq, G. R. Cutting, et al. 1991. EMBO [Eur. Mol. Biol. Organ] J. 10:1355-1363) that normal individuals can have up to 66% of bronchial CFTR mRNA transcripts that are missing exon 9, a region representing 21% of the sequence coding for the critical nucleotide (ATP)-binding fold 1 (NBF1) of the predicted CFTR protein. The study population included 78 individuals with no prior diagnosis of CF. Evaluation of bronchial epithelial cells (obtained by bronchoscopy) revealed that exon 9 was variably deleted in all individuals. Remarkably, there were four individuals, all greater than or equal to 35 yr, in whom bronchial epithelial cells exhibited 73, 89, 90, and 92% CFTR transcripts with inframe deletion of exon 9, respectively, despite normal sweat Cl- and no clinical manifestation of CF. In the context that only 8% or less of bronchial CFTR transcripts need exon 9 to maintain normal airway function, these observations strongly suggest that either exon 9 is not necessary for CFTR structure and/or function or that only a very small fraction of bronchial epithelial cells need to express normal CFTR mRNA transcripts with exon 9 to perform the function of CFTR sufficient to maintain a normal phenotype in vivo
