925 research outputs found
Four layer bandage compared with short stretch bandage for venous leg ulcers: systematic review and meta-analysis of randomised controlled trials with data from individual patients
<p><b>Objective:</b> To compare the effectiveness of two types of compression treatment (four layer bandage and short stretch bandage) in people with venous leg ulceration.</p>
<p><b>Design:</b> Systematic review and meta-analysis of patient level data.</p>
<p><b>Data:</b> sources Electronic databases (the Cochrane Central Register of Controlled Trials, the Cochrane Wounds Group Specialised Register, Medline, Embase, CINAHL, and National Research Register) and reference lists of retrieved articles searched to identify relevant trials and primary investigators. Primary investigators of eligible trials were invited to contribute raw data for re-analysis.</p>
<p><b>Review:</b> methods Randomised controlled trials of four layer bandage compared with short stretch bandage in people with venous leg ulceration were eligible for inclusion. The primary outcome for the meta-analysis was time to healing. Cox proportional hazards models were run to compare the methods in terms of time to healing with adjustment for independent predictors of healing. Secondary outcomes included incidence and number of adverse events per patient.</p>
<p><b>Results:</b> Seven eligible trials were identified (887 patients), and patient level data were retrieved for five (797 patients, 90% of known randomised patients). The four layer bandage was associated with significantly shorter time to healing: hazard ratio (95% confidence interval) from multifactorial model based on five trials was 1.31 (1.09 to 1.58), P=0.005. Larger ulcer area at baseline, more chronic ulceration, and previous ulceration were all independent predictors of delayed healing. Data from two trials showed no evidence of a difference in adverse event profiles between the two bandage types.</p>
<p><b>Conclusions:</b> Venous leg ulcers in patients treated with four layer bandages heal faster, on average, than those of people treated with the short stretch bandage. Benefits were consistent across patients with differing prognostic profiles.</p>
The importance of planetary rotation period for ocean heat transport
The climate, and hence potential habitability, of a planet crucially depends on how its atmospheric and oceanic circulation transports heat from warmer to cooler regions. However, previous studies of planetary climate have concentrated on modelling the dynamics of their atmospheres whilst dramatically simplifying the treatment of the oceans, which neglects or misrepresents the effect of the ocean in the total heat transport. Even the majority of studies with a dynamic ocean have used a simple so-called aquaplanet having no continental barriers, which is a configuration which dramatically changes the oceanic dynamics. Here the significance of the response of poleward ocean heat transport to planetary rotation period is shown with a simple meridional barrier – the simplest representation of any continental configuration. The poleward ocean heat transport increases significantly as the planetary rotation period is increased. The peak heat transport more than doubles when the rotation period is increased by a factor of ten. There are also significant changes to ocean temperature at depth, with implications for the carbon cycle. There is strong agreement between the model results and a scale analysis of the governing equations. This result highlights the importance of both planetary rotation period and the ocean circulation when considering planetary habitability
High Speed Phase-Resolved 2-d UBV Photometry of the Crab pulsar
We report a phase-resolved photometric and morphological analysis of UBV data
of the Crab pulsar obtained with the 2-d TRIFFID high speed optical photometer
mounted on the Russian 6m telescope. By being able to accurately isolate the
pulsar from the nebular background at an unprecedented temporal resolution (1
\mu s), the various light curve components were accurately fluxed via
phase-resolved photometry. Within the range, our datasets are consistent
with the existing trends reported elsewhere in the literature. In terms of flux
and phase duration, both the peak Full Width Half Maxima and Half Width Half
Maxima decrease as a function of photon energy. This is similarly the case for
the flux associated with the bridge of emission. Power-law fits to the various
light curve components are as follows; \alpha = 0.07 \pm 0.19 (peak 1), \alpha
= -0.06 \pm 0.19 (peak 2) and \alpha = -0.44 \pm 0.19 (bridge) - the
uncertainty here being dominated by the integrated CCD photometry used to
independently reference the TRIFFID data. Temporally, the main peaks are
coincident to \le 10 \mu s although an accurate phase lag with respect to the
radio main peak is compromised by radio timing uncertainties. The plateau on
the Crab's main peak was definitively determined to be \leq 55 \mu s in extent
and may decrease as a function of photon energy. There is no evidence for
non-stochastic activity over the light curves or within various phase regions,
nor is there evidence of anything akin to the giant pulses noted in the radio.
Finally, there is no evidence to support the existence of a reported 60 second
modulation suggested to be as a consequence of free precession.Comment: 13 pages, 12 figures, accepted for publication in Astronomy &
Astrophysic
Local electronic nematicity in the one-band Hubbard model
Nematicity is a well known property of liquid crystals and has been recently
discussed in the context of strongly interacting electrons. An electronic
nematic phase has been seen by many experiments in certain strongly correlated
materials, in particular, in the pseudogap phase generic to many hole-doped
cuprate superconductors. Recent measurements in high superconductors has
shown even if the lattice is perfectly rotationally symmetric, the ground state
can still have strongly nematic local properties. Our study of the
two-dimensional Hubbard model provides strong support of the recent
experimental results on local rotational symmetry breaking. The
variational cluster approach is used here to show the possibility of an
electronic nematic state and the proximity of the underlying symmetry-breaking
ground state within the Hubbard model. We identify this nematic phase in the
overdoped region and show that the local nematicity decreases with increasing
electron filling. Our results also indicate that strong Coulomb interaction may
drive the nematic phase into a phase similar to the stripe structure. The
calculated spin (magnetic) correlation function in momentum space shows the
effects resulting from real-space nematicity
Interaction effects and quantum phase transitions in topological insulators
We study strong correlation effects in topological insulators via the Lanczos
algorithm, which we utilize to calculate the exact many-particle ground-state
wave function and its topological properties. We analyze the simple,
noninteracting Haldane model on a honeycomb lattice with known topological
properties and demonstrate that these properties are already evident in small
clusters. Next, we consider interacting fermions by introducing repulsive
nearest-neighbor interactions. A first-order quantum phase transition was
discovered at finite interaction strength between the topological band
insulator and a topologically trivial Mott insulating phase by use of the
fidelity metric and the charge-density-wave structure factor. We construct the
phase diagram at as a function of the interaction strength and the
complex phase for the next-nearest-neighbor hoppings. Finally, we consider the
Haldane model with interacting hard-core bosons, where no evidence for a
topological phase is observed. An important general conclusion of our work is
that despite the intrinsic nonlocality of topological phases their key
topological properties manifest themselves already in small systems and
therefore can be studied numerically via exact diagonalization and observed
experimentally, e.g., with trapped ions and cold atoms in optical lattices.Comment: 13 pages, 12 figures. Published versio
Spectrum of the Dirac Operator and Multigrid Algorithm with Dynamical Staggered Fermions
Complete spectra of the staggered Dirac operator \Dirac are determined in
quenched four-dimensional gauge fields, and also in the presence of
dynamical fermions.
Periodic as well as antiperiodic boundary conditions are used.
An attempt is made to relate the performance of multigrid (MG) and conjugate
gradient (CG) algorithms for propagators with the distribution of the
eigenvalues of~\Dirac.
The convergence of the CG algorithm is determined only by the condition
number~ and by the lattice size.
Since~'s do not vary significantly when quarks become dynamic,
CG convergence in unquenched fields can be predicted from quenched
simulations.
On the other hand, MG convergence is not affected by~ but depends on
the spectrum in a more subtle way.Comment: 19 pages, 8 figures, HUB-IEP-94/12 and KL-TH 19/94; comes as a
uuencoded tar-compressed .ps-fil
Inelastic effects in electron transport studied with wave packet propagation
A time-dependent approach is used to explore inelastic effects during
electron transport through few-level systems. We study a tight-binding chain
with one and two sites connected to vibrations. This simple but transparent
model gives insight about inelastic effects, their meaning and the
approximations currently used to treat them. Our time-dependent approach allows
us to trace back the time sequence of vibrational excitation and electronic
interference, the ibrationally introduced time delay and the electronic phase
shift. We explore a full range of parameters going from weak to strong
electron-vibration coupling, from tunneling to contact, from one-vibration
description to the need of including all vibrations for a correct description
of inelastic effects in transport. We explore the validity of single-site
resonant models as well as its extension to more sites via molecular orbitals
and the conditions under which multi-orbital, multi-vibrational descriptions
cannot be simplified. We explain the physical meaning of the spectral features
in the second derivative of the electron current with respect to the bias
voltage. This permits us to nuance the meaning of the energy value of dips and
peaks. Finally, we show that finite-band effects lead to electron
back-scattering off the molecular vibrations in the regime of high-conductance,
although the drop in conductance at the vibrational threshold is rather due to
the rapid variation of the vibronic density of states.Comment: 38 pages, 14 figure
Nonperturbative Scaling Theory of Free Magnetic Moment Phases in Disordered Metals
The crossover between a free magnetic moment phase and a Kondo phase in low
dimensional disordered metals with dilute magnetic impurities is studied.
We perform a finite size scaling analysis of the distribution of the Kondo
temperature as obtained from a numerical renormalization group calculation of
the local magnetic susceptibility and from the solution of the self-consistent
Nagaoka-Suhl equation. We find a sizable fraction of free (unscreened) magnetic
moments when the exchange coupling falls below a disorder-dependent critical
value . Our numerical results show that between the free moment
phase due to Anderson localization and the Kondo screened phase there is a
phase where free moments occur due to the appearance of random local pseudogaps
at the Fermi energy whose width and power scale with the elastic scattering
rate .Comment: 4 pages, 6 figure
Spin-1/2 Heisenberg-Antiferromagnet on the Kagome Lattice: High Temperature Expansion and Exact Diagonalisation Studies
For the spin- Heisenberg antiferromagnet on the Kagom\'e lattice
we calculate the high temperature series for the specific heat and the
structure factor. A comparison of the series with exact diagonalisation studies
shows that the specific heat has further structure at lower temperature in
addition to a high temperature peak at . At the
structure factor agrees quite well with results for the ground state of a
finite cluster with 36 sites. At this temperature the structure factor is less
than two times its value and depends only weakly on the wavevector
, indicating the absence of magnetic order and a correlation length of
less than one lattice spacing. The uniform susceptibility has a maximum at
and vanishes exponentially for lower temperatures.Comment: 15 pages + 5 figures, revtex, 26.04.9
- …
