2,266 research outputs found

    Canonical Constraints on Leptonic Cp Violation using UHCR neutrino fluxes

    Get PDF
    It is shown that one can in principle constrain the CP-violating parameter delta from measurements of four independant |V_{ij}|^2, or three of them and a ratio, in the leptonic sector. To quantify our approach, using unitarity, we derive simple expressions in terms of four independant |V_{ij}|^2 for cos(delta) and an expression for sin^2(delta) from J^2. Thus, depending on the values of |V_{ij}| and their accuracy, we can set meaningful limits on |delta|. To illustrate numerically, if |V_{u1}|^2 is close to 0.1 with a 10% precision, and if |V_{e3}^2 is larger than 0.005 and for values of |V_{e2}|^2 and |V_{u3}|^2 that stay within +-0.1 of the current experimental data leads to a bound pi/2 < |delta| < pi. Alternatively, a certain combination of parameters with values of |V_{e3}|^2 larger than 0.01 leads to a closed bound of 73 < |delta| < 103. In general, we find that it is better to use |V_{u1}|^2 or |V_{t1}|^2 as the fourth independant |V_{ij}|^2 and that over most of the parameter space, delta is least sensitive to |V_{e3}|^2. With just three independant measurements (solar, atmospheric and reactor) it is impossible to set limits on the CP phase. In this respect, we study the use of ultra high energy cosmic (UHCR) neutrino fluxes as the additional fourth information. We find that within the SM, neutrino fluxes of all three flavours will be very similar but that pushing current neutrino data to their extreme values still allowed, ratios of cosmic neutrino fluxes can differ by up to 20%; such large discrepancies could imply negligibly small CP-violation. We also study a non radiative neutrino decay model and find that the neutrino fluxes can differ by a factor of up to 3 within this model and that an accuracy of 10% on the neutrino fluxes is sufficient to set interestin limits on delta.Comment: 8 pages, 2 figures, 5 table

    The Measurement of Tri-Linear Gauge Boson Couplings at e+e−e^+e^- Colliders

    Get PDF
    We describe a detailed study of the process e+e−→ℓνℓqqˉe^+e^- \to \ell\nu_\ell q \bar{q} and the measurement of tri-linear gauge boson couplings (TGV's) at LEP200 and at a 500~GeV and 1~TeV NLC. We included all tree level Feynman diagrams contributing to the four-fermion final states including gauge boson widths and non-resonance contributions. We employed a maximum likelihood analysis of a five dimensional differential cross section of angular distributions. This approach appears to offer an optimal strategy for measurement of TGV's. LEP200 will improve existing measurements of TGV's but not enough to see loop contributions of new physics. Measurements at the NLC will be roughly 2 orders of magnitude more precise which would probe the effects of new physics at the loop level.Comment: Latex file uses aipbook.sty with revtex and psfig.sty. 2 figures (uuencoded) will be added with figures command. Full postcript version with embedded figures is available at ftp://ftp.physics.carleton.ca/pub/theory/godfrey/ocipc9504.ps To appear in the Proceedings of the International Symposium on Vector Boson Self-Interactions, UCLA, Feb. 1-3, 199

    Innovative Feed-In Tariff Designs that Limit Policy Costs

    Get PDF
    Feed-in tariffs (FITs) are the most prevalent renewable energy policy used globally to date, and there are many benefits to the certainty offered in the marketplace to reduce development risks and associated financing costs and to grow the renewable energy industry. However, concerns over escalating costs in jurisdictions with FIT policies have led to increased attention on cost control in renewable energy policy design. In recent years, policy mechanisms for containing FIT costs have become more refined, allowing policymakers to exert greater control on policy outcomes and on the resulting costs to ratepayers. As policymakers and regulators in the United States begin to explore the use of FITs, careful consideration must be given to the ways in which policy design can be used to balance the policies' advantages while bounding its costs. This report explores mechanisms that policymakers have implemented to limit FIT policy costs. If designed clearly and transparently, such mechanisms can align policymaker and market expectations for project deployment. Three different policy tools are evaluated: (1) caps, (2) payment level adjustment mechanisms, and (3) auction-based designs. The report employs case studies to explore the strengths and weaknesses of these three cost containment tools. These tools are then evaluated with a set of criteria including predictability for policymakers and the marketplace and the potential for unintended consequences

    The Functional Significance of Social Cognition in Schizophrenia: A Review

    Get PDF
    Deficits in a wide array of functional outcome areas (eg, social functioning, social skills, independent living skills, etc) are marked in schizophrenia. Consequently, much recent research has attempted to identify factors that may contribute to functional outcome; social cognition is one such domain. The purpose of this article is to review research examining the relationship between social cognition and functional outcome. Comprehensive searches of PsycINFO and MEDLINE/PUBMED were conducted to identify relevant published manuscripts to include in the current review. It is concluded that the relationship between social cognition and functional outcome depends on the specific domains of each construct examined; however, it can generally be concluded that there are clear and consistent relationships between aspects of functional outcome and social cognition. These findings are discussed in light of treatment implications for schizophrenia

    Demonstrating the model nature of the high-temperature superconductor HgBa2_2CuO4+Δ_{4+\Delta}

    Full text link
    The compound HgBa2_2CuO4+Δ_{4+\Delta} (Hg1201) exhibits a simple tetragonal crystal structure and the highest superconducting transition temperature (Tc_c) among all single Cu-O layer cuprates, with Tc_c = 97 K (onset) at optimal doping. Due to a lack of sizable single crystals, experimental work on this very attractive system has been significantly limited. Thanks to a recent breakthrough in crystal growth, such crystals have now become available. Here, we demonstrate that it is possible to identify suitable heat treatment conditions to systematically and uniformly tune the hole concentration of Hg1201 crystals over a wide range, from very underdoped (Tc_c = 47 K, hole concentration p ~ 0.08) to overdoped (Tc_c = 64 K, p ~ 0.22). We then present quantitative magnetic susceptibility and DC charge transport results that reveal the very high-quality nature of the studied crystals. Using XPS on cleaved samples, we furthermore demonstrate that it is possible to obtain large surfaces of good quality. These characterization measurements demonstrate that Hg1201 should be viewed as a model high-temperature superconductor, and they provide the foundation for extensive future experimental work.Comment: 15 pages, 6 Figure

    SUSY Magnetic Moments Sum Rules and Supersymmetry Breaking

    Full text link
    It was recently shown that unbroken N=1 Susy relates, in a model independent way, the magnetic transitions between states of different spin within a given charged massive supermultiplet. We verify explicitly these sum rules for a vector multiplet in the case of massless and massive fermions. The purpose of this analysis is to provide the ground for the broken susy case. We study the modifications of these results when an explicit soft Susy breaking realized through a universal mass for all scalars is present. As a by-product we provide a computation of the g−2g-2 of the WW boson in the standard model which corrects previous evaluations in the literature.Comment: 16+5 pages, Latex,(feynman.tex to print the figures), DFPD 94/TH/2

    Supersymmetric QCD flavor changing top quark decay

    Get PDF
    We present a detailed and complete calculation of the gluino and scalar quarks contribution to the flavour-changing top quark decay into a charm quark and a photon, gluon, or a Z boson within the minimal supersymmetric standard model including flavour changing gluino-quarks-scalar quarks couplings in the right-handed sector. We compare the results with the ones presented in an earlier paper where we considered flavour changing couplings only in the left-handed sector. We show that these new couplings have important consequences leading to a large enhancement when the mixing of the scalar partners of the left- and right-handed top quark is included. Furthermore CP violation in the flavour changing top quark decay will occur when a SUSY phase is taken into account.Comment: 14 pages, latex, 3 figure

    Patterns in the Fermion Mixing Matrix, a bottom-up approach

    Get PDF
    We first obtain the most general and compact parametrization of the unitary transformation diagonalizing any 3 by 3 hermitian matrix H, as a function of its elements and eigenvalues. We then study a special class of fermion mass matrices, defined by the requirement that all of the diagonalizing unitary matrices (in the up, down, charged lepton and neutrino sectors) contain at least one mixing angle much smaller than the other two. Our new parametrization allows us to quickly extract information on the patterns and predictions emerging from this scheme. In particular we find that the phase difference between two elements of the two mass matrices (of the sector in question) controls the generic size of one of the observable fermion mixing angles: i.e. just fixing that particular phase difference will "predict" the generic value of one of the mixing angles, irrespective of the value of anything else.Comment: 29 pages, 3 figures, references added, to appear in PR

    W ANOMALOUS MOMENTS AND THE POLARIZATION ASYMMETRY ZERO IN gamma e --> W nu

    Full text link
    We show from general principles that there must be a center of mass energy, s0\sqrt s_0, where the polarization asymmetry A=Δσ(γe→Wν)/σ(γe→Wν)A=\Delta \sigma({\gamma e \to W \nu })/ \sigma({\gamma e \to W \nu }) for circularly-polarized photon and electron beams vanishes. In the case of the Standard Model, the crossing point where the asymmetry changes sign occurs in Born approximation at sγe=3.1583…MW≃254\sqrt s_{\gamma e} = 3.1583\ldots M_W \simeq 254 GeV. We demonstrate the sensitivity of the position of the polarization asymmetry zero to modifications of the SM trilinear γWW\gamma W W coupling. Given reasonable assumptions for the luminosity and energy range for the Next Linear Collider(NLC) with a backscattered laser beam, we show that the zero point, s0\sqrt s_0, of the polarization asymmetry may be determined with sufficient precision to constrain the anomalous couplings of the WW to better than the 1\% level at 95%95\% CL. In addition to the fact that only a limited range of energy is required, the polarization asymmetry measurements have the important advantage that many of the systematic errors cancel in taking cross section ratios. The position of the zero thus provides an additional weapon in the arsenal used to probe anomalous trilinear gauge couplings.Comment: 21 pages, uuencoded postscript file. For hard copy, send e-mail to [email protected]
    • …
    corecore