1,175 research outputs found

    Mid Infrared Photometry of Mass-Losing AGB Stars

    Get PDF
    We present ground-based mid-infrared imaging for 27 M-, S- and C-type Asymptotic Giant Branch (AGB) stars. The data are compared with those of the database available thanks to the IRAS, ISO, MSX and 2MASS catalogues. Our goal is to establish relations between the IR colors, the effective temperature TeffT_{eff}, the luminosity LL and the mass loss rate M˙\dot M, for improving the effectiveness of AGB modelling. Bolometric (absolute) magnitudes are obtained through distance compilations, and by applying previously-derived bolometric corrections; the variability is also studied, using data accumulated since the IRAS epoch. The main results are: i) Values of LL and M˙\dot M for C stars fit relations previously established by us, with Miras being on average more evolved and mass losing than Semiregulars. ii) Moderate IR excesses (as compared to evolutionary tracks) are found for S and M stars in our sample: they are confirmed to originate from the dusty circumstellar environment. iii) A larger reddening characterizes C-rich Miras and post-AGBs. In this case, part of the excess is due to AGB models overestimating TeffT_{eff} for C-stars, as a consequence of the lack of suitable molecular opacities. This has a large effect on the colors of C-rich sources and sometimes disentangling the photospheric and circumstellar contributions is difficult; better model atmospheres should be used in stellar evolutionary codes for C stars. iv) The presence of a long-term variability at mid-IR wavelengths seems to be limited to sources with maximum emission in the 8 -- 20 ÎŒ\mum region, usually Mira variables (1/3 of our sample). Most Semiregular and post-AGB stars studied here remained remarkably constant in mid-IR over the last twenty years.Comment: Accepted for publication in the Astronomical Journal - 35 pages (in preprint), 9 figures, 5 table

    Commuter aircraft aerodynamic design: wind-tunnel tests and CFD analysis

    Get PDF
    The paper presents wind-tunnel tests and CFD numerical aerodynamic analysis of Tecnam P2012 Traveller aircraft. An extensive wind tunnel tests campaign of several different modular aircraft configurations analyzed has been performed on a scaled model in order to experimentally estimate both longitudinal and lateral-directional stability, control derivatives, and to improve the aircraft aerodynamic performances. Simultaneously numerical investigations through a CFD software has been performed, both at wind-tunnel tests Reynolds number (Re=0.6millions) and at free flight Reynolds number of the full scale aircraft (Re=4 or 9 millions). Finally results are compared showing a good agreement in the lift and pitching moment coefficient both with and without control surfaces or flap deflections, and an underestimation of drag coefficient in the CFD numerical analysis. Horizontal tail positions are also tested in wind-tunnel and compared to CFD analysis highlighting how an accurate design leads to improvement both in stability and control. Results will be very useful in the final design of the aircraft and to perform dynamic simulations

    The challenge of perioperative pain management in opioid-tolerant patients

    Get PDF
    The increasing number of opioid users among chronic pain patients, and opioid abusers among the general population, makes perioperative pain management challenging for health care professionals. Anesthesiologists, surgeons, and nurses should be familiar with some pharmacological phenomena which are typical of opioid users and abusers, such as tolerance, physical dependence, hyperalgesia, and addiction. Inadequate pain management is very common in these patients, due to common prejudices and fears. The target of preoperative evaluation is to identify comorbidities and risk factors and recognize signs and symptoms of opioid abuse and opioid withdrawal. Clinicians are encouraged to plan perioperative pain medications and to refer these patients to psychiatrists and addiction specialists for their evaluation. The aim of this review was to give practical suggestions for perioperative management of surgical opioid-tolerant patients, together with schemes of opioid conversion for chronic pain patients assuming oral or transdermal opioids, and patients under maintenance programs with methadone, buprenorphine, or naltrexone

    Design and optimization of a large turboprop aircraft

    Get PDF
    This paper proposes a feasibility study concerning a large turboprop aircraft to be used as a lower environmental impact solution to current regional jets operated on short/medium hauls. An overview of this market scenario highlights that this segment is evenly shared between regional turboprop and jet aircraft. Although regional jets ensure a large operative flexibility, they are usually not optimized for short missions with a negative effect on block fuel and environmental impact. Conversely, turboprops represent a greener solution but with reduced passenger capacity and speed. Those aspects highlight a slot for a new turboprop platform coupling higher seat capacity, cruise speed and design range with a reduced fuel consumption. This platform should operate on those ranges where neither jet aircraft nor existing turboprops are optimized. This work compares three different solutions: a high‐wing layout with under‐wing engines installation and both two-and three‐lifting‐surface configurations with low‐wing and tail tips‐mounted engines. For each concept, a multi‐disciplinary optimization was performed targeting the minimum block fuel on a 1600 NM mission. Optimum solutions were compared with both a regional jet such as the Airbus A220‐300 operated on 1600 NM and with a jet aircraft specifically designed for this range
    • 

    corecore