362 research outputs found

    Consolidated Biochemical Profile of Subacute Stage Traumatic Brain Injury in Early Development

    Get PDF
    Traumatic brain injury (TBI) in general has varied neuropathological consequences depending upon the intensity and biomechanics of the injury. Furthermore, in pediatric TBI, intrinsic developmental changes add further complexity, necessitating a biochemical dimension for improved TBI characterization. In our earlier study investigating the subacute stage TBI metabolome (72 h post-injury) in a developmental rat model, significant ipsilateral brain biochemical changes occurred across 25 metabolite sets as determined by metabolite set enrichment analysis (MSEA). The broad metabolic perturbation was accompanied by behavioral deficits and neuronal loss across the ipsilateral hemisphere containing the injury epicenter. In order to obtain a consolidated biochemical profile of the TBI assessment, a subgrouping of the 190 identified brain metabolites was performed. Metabolites were divided into seven major subgroups: oxidative energy/mitochondrial, glycolysis/pentose phosphate pathway, fatty acid, amino acid, neurotransmitters/neuromodulators, one-carbon/folate and other metabolites. Subgroups were based on the chemical nature and association with critically altered biochemical pathways after TBI as obtained from our earlier untargeted analysis. Each metabolite subgroup extracted from the ipsilateral sham and TBI brains were modeled using multivariate partial least square discriminant analysis (PLS-DA) with the model accuracy used as a measurable index of TBI neurochemical impact. Volcano plots of each subgroup, corrected for multiple comparisons, determined the TBI neurochemical specificity. The results provide a ranked biochemical profile along with specificity of changes after developmental TBI, enabling a consolidated biochemical template for future classification of different TBI intensities and injury types in animal models

    A novel tissue-specific meta-analysis approach for gene expression predictions, initiated with a mammalian gene expression testis database

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>In the recent years, there has been a rise in gene expression profiling reports. Unfortunately, it has not been possible to make maximum use of available gene expression data. Many databases and programs can be used to derive the possible expression patterns of mammalian genes, based on existing data. However, these available resources have limitations. For example, it is not possible to obtain a list of genes that are expressed in certain conditions. To overcome such limitations, we have taken up a new strategy to predict gene expression patterns using available information, for one tissue at a time.</p> <p>Results</p> <p>The first step of this approach involved manual collection of maximum data derived from large-scale (genome-wide) gene expression studies, pertaining to mammalian testis. These data have been compiled into a Mammalian Gene Expression Testis-database (MGEx-Tdb). This process resulted in a richer collection of gene expression data compared to other databases/resources, for multiple testicular conditions. The gene-lists collected this way in turn were exploited to derive a 'consensus' expression status for each gene, across studies. The expression information obtained from the newly developed database mostly agreed with results from multiple small-scale studies on selected genes. A comparative analysis showed that MGEx-Tdb can retrieve the gene expression information more efficiently than other commonly used databases. It has the ability to provide a clear expression status (transcribed or dormant) for most genes, in the testis tissue, under several specific physiological/experimental conditions and/or cell-types.</p> <p>Conclusions</p> <p>Manual compilation of gene expression data, which can be a painstaking process, followed by a consensus expression status determination for specific locations and conditions, can be a reliable way of making use of the existing data to predict gene expression patterns. MGEx-Tdb provides expression information for 14 different combinations of specific locations and conditions in humans (25,158 genes), 79 in mice (22,919 genes) and 23 in rats (14,108 genes). It is also the first system that can predict expression of genes with a 'reliability-score', which is calculated based on the extent of agreements and contradictions across gene-sets/studies. This new platform is publicly available at the following web address: <url>http://resource.ibab.ac.in/MGEx-Tdb/</url></p

    Markedly lower follow-up rate after liver biopsy in patients with non-alcoholic fatty liver diseases than those with viral hepatitis in Japan

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Patients with non-alcoholic fatty liver diseases (NAFLD) are recommended to have periodic follow-up exams because these patients are at increased risk of the presence of non-alcoholic steatohepatitis (NASH), which can lead to cirrhosis or hepatocellular carcinoma. We investigated the follow-up status of NAFLD patients after a liver biopsy examination.</p> <p>Methods</p> <p>We compared the follow-up rates of NAFLD patients who had received an ultrasonography-guided liver biopsy and patients who had received a liver biopsy for chronic viral hepatitis (hepatitis B or C).</p> <p>Results</p> <p>The 1- and 3-year follow-up rates after the liver biopsy were 92.7% and 88.3% for patients with chronic HBV infection, and 93.4% and 88.2% for patients with chronic HCV infection, respectively. In contrast, the follow-up rates for NAFLD patients were 77.6% and 49.9%, respectively, which were significantly lower than those of patients with chronic viral hepatitis (<it>p </it>< 0.0001). Among NAFLD patients, the respective 1- and 3-year follow-up rates were 73.0% and 44.6% for patients with simple steatosis and 80.0% and 52.4% for patients with NASH based on a pathologic diagnosis, without significant difference between these two subgroups (<it>p </it>= 0.5202).</p> <p>Conclusions</p> <p>The outpatient-based follow-up rate after a liver biopsy was significantly lower in NAFLD patients compared to patients with chronic viral hepatitis, regardless of the presence of NASH. It is important to determine how to maintain regular hospital visits for NAFLD patients, preventing patient attrition.</p

    Hepatitis following famotidine: a case report

    Get PDF
    H2 receptor antagonists can rarely cause idiosyncratic drug reactions leading to acute hepatitis. Famotidine, however, is considered a relatively safe drug with regards to hepatotoxicity. We report a case of a 47 year old male with a history of hepatitis C who developed acute hepatitis on the third day of hospitalization with a dramatic rise in his liver enzymes from normal values at the time of admission. The acute rise in liver enzymes made us consider an adverse drug reaction and famotidine was discontinued. Subsequently his liver enzymes came back to normal in seven days. Thus, physicians should consider famotidine induced hepatitis as a possible etiology of acute liver dysfunction

    Serum procalcitonin and CRP levels in non-alcoholic fatty liver disease: a case control study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Both C reactive protein (CRP) and procalcitonin (PCT) are well known acute phase reactant proteins. CRP was reported to increase in metabolic syndrome and type-2 diabetes. Similarly altered level of serum PCT was found in chronic liver diseases and cirrhosis. The liver is considered the main source of CRP and a source of PCT, however, the serum PCT and CRP levels in non-alcoholic fatty liver disease (NAFLD) were not compared previously. Therefore we aimed to study the diagnostic and discriminative role of serum PCT and CRP in NAFLD.</p> <p>Methods</p> <p>Fifty NAFLD cases and 50 healthy controls were included to the study. Liver function tests were measured, body mass index was calculated, and insulin resistance was determined by using a homeostasis model assessment (HOMA-IR). Ultrasound evaluation was performed for each subject. Serum CRP was measured with nephalometric method. Serum PCT was measured with Kryptor based system.</p> <p>Results</p> <p>Serum PCT levels were similar in steatohepatitis (n 20) and simple steatosis (n 27) patients, and were not different than the control group (0.06 ± 0.01, 0.04 ± 0.01 versus 0.06 ± 0.01 ng/ml respectively). Serum CRP levels were significantly higher in simple steatosis, and steatohepatitis groups compared to healthy controls (7.5 ± 1.6 and 5.2 ± 2.5 versus 2.9 ± 0.5 mg/dl respectively p < 0.01). CRP could not differentiate steatohepatitis from simple steatosis. Beside, three patients with focal fatty liver disease had normal serum CRP levels.</p> <p>Conclusion</p> <p>Serum PCT was within normal ranges in patients with simple steatosis or steatohepatitis and has no diagnostic value. Serum CRP level was increased in NAFLD compared to controls. CRP can be used as an additional marker for diagnosis of NAFLD but it has no value in discrimination of steatohepatitis from simple steatosis.</p
    corecore