54 research outputs found

    Findings of Factify 2: Multimodal Fake News Detection

    Full text link
    With social media usage growing exponentially in the past few years, fake news has also become extremely prevalent. The detrimental impact of fake news emphasizes the need for research focused on automating the detection of false information and verifying its accuracy. In this work, we present the outcome of the Factify 2 shared task, which provides a multi-modal fact verification and satire news dataset, as part of the DeFactify 2 workshop at AAAI'23. The data calls for a comparison based approach to the task by pairing social media claims with supporting documents, with both text and image, divided into 5 classes based on multi-modal relations. In the second iteration of this task we had over 60 participants and 9 final test-set submissions. The best performances came from the use of DeBERTa for text and Swinv2 and CLIP for image. The highest F1 score averaged for all five classes was 81.82%.Comment: Defactify2 @AAAI 202

    Overview of Memotion 3: Sentiment and Emotion Analysis of Codemixed Hinglish Memes

    Full text link
    Analyzing memes on the internet has emerged as a crucial endeavor due to the impact this multi-modal form of content wields in shaping online discourse. Memes have become a powerful tool for expressing emotions and sentiments, possibly even spreading hate and misinformation, through humor and sarcasm. In this paper, we present the overview of the Memotion 3 shared task, as part of the DeFactify 2 workshop at AAAI-23. The task released an annotated dataset of Hindi-English code-mixed memes based on their Sentiment (Task A), Emotion (Task B), and Emotion intensity (Task C). Each of these is defined as an individual task and the participants are ranked separately for each task. Over 50 teams registered for the shared task and 5 made final submissions to the test set of the Memotion 3 dataset. CLIP, BERT modifications, ViT etc. were the most popular models among the participants along with approaches such as Student-Teacher model, Fusion, and Ensembling. The best final F1 score for Task A is 34.41, Task B is 79.77 and Task C is 59.82.Comment: Defactify2 @AAAI 202

    Factify 2: A Multimodal Fake News and Satire News Dataset

    Full text link
    The internet gives the world an open platform to express their views and share their stories. While this is very valuable, it makes fake news one of our society's most pressing problems. Manual fact checking process is time consuming, which makes it challenging to disprove misleading assertions before they cause significant harm. This is he driving interest in automatic fact or claim verification. Some of the existing datasets aim to support development of automating fact-checking techniques, however, most of them are text based. Multi-modal fact verification has received relatively scant attention. In this paper, we provide a multi-modal fact-checking dataset called FACTIFY 2, improving Factify 1 by using new data sources and adding satire articles. Factify 2 has 50,000 new data instances. Similar to FACTIFY 1.0, we have three broad categories - support, no-evidence, and refute, with sub-categories based on the entailment of visual and textual data. We also provide a BERT and Vison Transformer based baseline, which acheives 65% F1 score in the test set. The baseline codes and the dataset will be made available at https://github.com/surya1701/Factify-2.0.Comment: Defactify@AAAI202

    Hindi to English and Marathi to English cross language information retrieval evaluation

    No full text
    In this paper, we present our Hindi to English and Marathi to English CLIR systems developed as part of our participation in the CLEF 2007 Ad-Hoc Bilingual task. We take a query translation based approach using bi-lingual dictionaries. Query words not found in the dictionary are transliterated using a simple rule based transliteration approach. The resultant transliteration is then compared with the unique words of the corpus to return the 'k' words most similar to the transliterated word. The resulting multiple translation/transliteration choices for each query word are disambiguated using an iterative page-rank style algorithm which, based on term-term co-occurrence statistics, produces the final translated query. Using the above approach, for Hindi, we achieve a Mean Average Precision (MAP) of 0.2366 using title and a MAP of 0.2952 using title and description. For Marathi, we achieve a MAP of 0.2163 using title
    corecore