86 research outputs found

    Three Open Questions for the Design of AI for Music Composition

    Get PDF
    This paper suggests three open questions for designing AI for music composition by reflecting on interviews with expert and novice composers. Our questions consider the role of AI as a mediator, the importance of a composer’s originality, and AI for building intuition

    Cryptolepis sanguinolenta Root Tablets: Effect of Binder Type and Concentration on the Tablet Properties

    Get PDF
    ABSTRACT The objectives of the study were to formulate Cryptolepis sanguinolenta root powder into tablets and to evaluate the effect of different binders and binder concentrations on the properties of tablets. The tablets were formulated by the wet granulation method using gelatin and sodium carboxymethyl cellulose (SCMC) as binders at concentrations of 2%, 4%, 6% and 8%w/w. The tablets were evaluated using the relevant official and unofficial tests. Also the phytochemistry of the powdered root extract of C. sanguinolenta was evaluated. Phytochemical analysis showed that C. sanguinolenta root contains alkaloids, terpenoids, steroids, proteins, carbohydrate, resins, reducing sugars and glycosides. Tablets formulated with SCMC significantly exhibited higher disintegration times than those formulated with gelatin (p<0.05).Tablets hardness ranged from 3.51 ± 0.12 to 5.02 ± 0.10 kgf for A1 and A4 tablets formulated with 2 and 8% gelatin and 2.00 ± 0.11 to 5.00 ± 0.17 kgf for B1 and B4 tablets formulated with 2 and 8% SCMC. All the tablet batches exhibited friability of < 1% (p<0.05). Therefore the powdered root of C. sanguinolenta could be formulated as normal release tablets using gelatin and SCMC in order to standardize the preparation and also enhance patient's compliance

    A Detection of Cosmological 21 cm Emission from CHIME in Cross-correlation with eBOSS Measurements of the Lyman-α\alpha Forest

    Full text link
    We report the detection of 21 cm emission at an average redshift zˉ=2.3\bar{z} = 2.3 in the cross-correlation of data from the Canadian Hydrogen Intensity Mapping Experiment (CHIME) with measurements of the Lyman-α\alpha forest from eBOSS. Data collected by CHIME over 88 days in the 400−500400-500~MHz frequency band (1.8<z<2.51.8 < z < 2.5) are formed into maps of the sky and high-pass delay filtered to suppress the foreground power, corresponding to removing cosmological scales with k∥≲0.13 Mpc−1k_\parallel \lesssim 0.13\ \text{Mpc}^{-1} at the average redshift. Line-of-sight spectra to the eBOSS background quasar locations are extracted from the CHIME maps and combined with the Lyman-α\alpha forest flux transmission spectra to estimate the 21 cm-Lyman-α\alpha cross-correlation function. Fitting a simulation-derived template function to this measurement results in a 9σ9\sigma detection significance. The coherent accumulation of the signal through cross-correlation is sufficient to enable a detection despite excess variance from foreground residuals ∼6−10\sim6-10 times brighter than the expected thermal noise level in the correlation function. These results are the highest-redshift measurement of \tcm emission to date, and set the stage for future 21 cm intensity mapping analyses at z>1.8z>1.8

    CHIME/FRB Detection of Eight New Repeating Fast Radio Burst Sources

    Full text link
    We report on the discovery of eight repeating fast radio burst (FRB) sources found using the Canadian Hydrogen Intensity Mapping Experiment (CHIME) telescope. These sources span a dispersion measure (DM) range of 103.5 to 1281 pc cm−3^{-3}. They display varying degrees of activity: six sources were detected twice, another three times, and one ten times. These eight repeating FRBs likely represent the bright and/or high-rate end of a distribution of infrequently repeating sources. For all sources, we determine sky coordinates with uncertainties of ∼\sim10′^\prime. FRB 180916.J0158+65 has a burst-averaged DM = 349.2±0.3349.2 \pm 0.3 pc cm−3^{-3} and a low DM excess over the modelled Galactic maximum (as low as ∼\sim20 pc cm−3^{-3}); this source also has a Faraday rotation measure (RM) of −114.6±0.6-114.6 \pm 0.6 rad m−2^{-2}, much lower than the RM measured for FRB 121102. FRB 181030.J1054+73 has the lowest DM for a repeater, 103.5±0.3103.5 \pm 0.3 pc cm−3^{-3}, with a DM excess of ∼\sim 70 pc cm−3^{-3}. Both sources are interesting targets for multi-wavelength follow-up due to their apparent proximity. The DM distribution of our repeater sample is statistically indistinguishable from that of the first 12 CHIME/FRB sources that have not repeated. We find, with 4σ\sigma significance, that repeater bursts are generally wider than those of CHIME/FRB bursts that have not repeated, suggesting different emission mechanisms. Our repeater events show complex morphologies that are reminiscent of the first two discovered repeating FRBs. The repetitive behavior of these sources will enable interferometric localizations and subsequent host galaxy identifications.Comment: 40 pages, 11 figures; accepted by ApJL on 28 September 2019; added analysis of correlation between width and max. flux densit

    Periodic activity from a fast radio burst source

    Full text link
    Fast radio bursts (FRBs) are bright, millisecond-duration radio transients originating from extragalactic distances. Their origin is unknown. Some FRB sources emit repeat bursts, ruling out cataclysmic origins for those events. Despite searches for periodicity in repeat burst arrival times on time scales from milliseconds to many days, these bursts have hitherto been observed to appear sporadically, and though clustered, without a regular pattern. Here we report the detection of a 16.35±0.1516.35\pm0.15 day periodicity (or possibly a higher-frequency alias of that periodicity) from a repeating FRB 180916.J0158+65 detected by the Canadian Hydrogen Intensity Mapping Experiment Fast Radio Burst Project (CHIME/FRB). In 38 bursts recorded from September 16th, 2018 through February 4th, 2020, we find that all bursts arrive in a 5-day phase window, and 50% of the bursts arrive in a 0.6-day phase window. Our results suggest a mechanism for periodic modulation either of the burst emission itself, or through external amplification or absorption, and disfavour models invoking purely sporadic processes

    CHIME/FRB Discovery of 25 Repeating Fast Radio Burst Sources

    Full text link
    We present the discovery of 25 new repeating fast radio burst (FRB) sources found among CHIME/FRB events detected between 2019 September 30 and 2021 May 1. The sources were found using a new clustering algorithm that looks for multiple events co-located on the sky having similar dispersion measures (DMs). The new repeaters have DMs ranging from ∼\sim220 pc cm−3^{-3} to ∼\sim1700 pc cm−3^{-3}, and include sources having exhibited as few as two bursts to as many as twelve. We report a statistically significant difference in both the DM and extragalactic DM (eDM) distributions between repeating and apparently nonrepeating sources, with repeaters having lower mean DM and eDM, and we discuss the implications. We find no clear bimodality between the repetition rates of repeaters and upper limits on repetition from apparently nonrepeating sources after correcting for sensitivity and exposure effects, although some active repeating sources stand out as anomalous. We measure the repeater fraction and find that it tends to an equilibrium of 2.6−2.6+2.92.6_{-2.6}^{+2.9}% over our exposure thus far. We also report on 14 more sources which are promising repeating FRB candidates and which merit follow-up observations for confirmation.Comment: Submitted to ApJ. Comments are welcome and follow-up observations are encouraged

    Sub-second periodicity in a fast radio burst

    Full text link
    Fast radio bursts (FRBs) are millisecond-duration flashes of radio waves that are visible at distances of billions of light-years. The nature of their progenitors and their emission mechanism remain open astrophysical questions. Here we report the detection of the multi-component FRB 20191221A and the identification of a periodic separation of 216.8(1) ms between its components with a significance of 6.5 sigmas. The long (~3 s) duration and nine or more components forming the pulse profile make this source an outlier in the FRB population. Such short periodicity provides strong evidence for a neutron-star origin of the event. Moreover, our detection favours emission arising from the neutron-star magnetosphere, as opposed to emission regions located further away from the star, as predicted by some models.Comment: Updated to conform to the accepted versio
    • …
    corecore