3,061 research outputs found

    Modeling and Parameter Characterization of A Betavoltaic Cell

    Get PDF
    Betavoltaic cells are a type of nuclear battery where kinetic energy from beta particles are converted into electricity. The goal of this research is to evaluate betavoltaic cell electrical performance and predict its response to temperature changes for potential implementation. To achieve this goal, three tasks were performed: betavoltaic cells were electrically characterized under temperature, critical betavoltaic semiconductor parameters were experimentally determined, and the Shockley-Diode model was used to predict electrical performance and compared to experimental results. Betavoltaic cells were evaluated from -30◦Cto70◦C. I-V curves were gathered at each temperature step in order to determine open circuit voltage and short circuit current. Open-circuit voltage was observed to decrease with temperature due to the increase in dark current from thermal excitation while short-circuit current increased with temperature due to the increase in mobility in electrons and holes. Open-circuit voltage was 0.75 V and short-circuit current was 70 nA at room temperature. Critical parameters, such as parasitic resistance and doping density were determined. Parasitic resistance was found by evaluating the slopes of I-V curves when I =0 and V = 0 for shunt and series resistance, respectively, and were determined to be 2.3 × 108 Ωand 1 × 106 Ω, respectively. Doping density was found by determining the capacitance of the cell under AC voltage bias and was determined to be 1 × 1017 cm−3. Absorption depths were determined in MCNP6 where a monoenergetic point source emitted beta electrons onto a GaAs substrate. Absorption depth was determined at the depth where 99% of energy was deposited into the GaAs substrate for all energies. Backscattering coefficients were also determined by the number of electrons passing through the top layer of the GaAs substrate. The number of particles emitted through the bottom face of the source film was determined in MCNP6 with the F1 tally. Critical parameters were used to model the NanoTritiumTM cells with the Shockley-Diode model. The model was solved numerically using MATLAB’s fzero function and was also solved explicitly using the lambert-W function. For I-V curves, the lambert-W function was inaccurate, producing curves that shifted 0.1 V, while solving the model numerically was accurate to experimental results. For determining both open-circuit voltage and short-circuit current, the numerical method was accurate while the lambert-W function could not determine results outside of certain temperature ranges

    On the Round Complexity of the Shuffle Model

    Get PDF
    The shuffle model of differential privacy was proposed as a viable model for performing distributed differentially private computations. Informally, the model consists of an untrusted analyzer that receives messages sent by participating parties via a shuffle functionality, the latter potentially disassociates messages from their senders. Prior work focused on one-round differentially private shuffle model protocols, demonstrating that functionalities such as addition and histograms can be performed in this model with accuracy levels similar to that of the curator model of differential privacy, where the computation is performed by a fully trusted party. Focusing on the round complexity of the shuffle model, we ask in this work what can be computed in the shuffle model of differential privacy with two rounds. Ishai et al. [FOCS 2006] showed how to use one round of the shuffle to establish secret keys between every two parties. Using this primitive to simulate a general secure multi-party protocol increases its round complexity by one. We show how two parties can use one round of the shuffle to send secret messages without having to first establish a secret key, hence retaining round complexity. Combining this primitive with the two-round semi-honest protocol of Applebaun et al. [TCC 2018], we obtain that every randomized functionality can be computed in the shuffle model with an honest majority, in merely two rounds. This includes any differentially private computation. We then move to examine differentially private computations in the shuffle model that (i) do not require the assumption of an honest majority, or (ii) do not admit one-round protocols, even with an honest majority. For that, we introduce two computational tasks: the common-element problem and the nested-common-element problem, for which we show separations between one-round and two-round protocols

    A Measurement of the KL Charge Asymmetry

    Full text link
    We present a measurement of the charge asymmetry δL\delta_L in the mode KL→π±e∓νK_L \to \pi^{\pm}e^{\mp}\nu based on 298 million analyzed decays. We measure a value of δL=(3322±58(stat)±47(sys))⋅10−6\delta_L = (3322 \pm 58(stat) \pm 47(sys))\cdot 10^{-6}, in good agreement with previous measurements and 2.4 times more precise than the current best published result. The result is used to place more stringent limits on CPT and ΔS=ΔQ\Delta S = \Delta Q violation in the neutral kaon system.Comment: Submitted to Physical Review Letters, Dec 31, 2001. 4 pages, 4 figure

    Search for Light Gluinos via the Spontaneous Appearance of pi+pi- Pairs with an 800 GeV/c Proton Beam at Fermilab

    Get PDF
    We searched for the appearance of pi+pi- pairs with invariant mass greater than 648 MeV in a neutral beam. Such an observation could signify the decay of a long-lived light neutral particle. We find no evidence for this decay. Our null result severely constrains the existence of an R0 hadron, which is the lightest bound state of a gluon and a light gluino, and thereby also the possibility of a light gluino. Depending on the photino mass, we exclude the R0 in the mass and lifetime ranges of 1.2 -- 4.6 GeV and 2E-10 -- 7E-4 seconds, respectively. (To Appear in Phys. Rev. Lett.)Comment: Documentstyle aps,epsfig,prl (revtex), 6 pages, 7 figure

    Search for the Decay K_L -> pi^0 nu nubar using pi^0 -> e^+ e^- gamma

    Full text link
    We report on a search for the decay K_L -> pi^0 nu nubar, carried out as a part of E799-II, a rare K_L decay experiment at Fermilab. Within the Standard Model, the K_L -> pi^0 nu nubar decay is dominated by direct CP violating processes, and thus an observation of the decay implies confirmation of direct CP violation. Due to theoretically clean calculations, a measurement of B(K_L -> pi^0 nu nubar) is one of the best ways to determine the CKM parameter eta. No events were observed, and we set an upper limit B(K_L -> pi^0 nu nubar) < 5.9 times 10^-7 at the 90% confidence level.Comment: 5 pages, 4 figure
    • …
    corecore