9,751 research outputs found

    The diffuse neutrino flux from supernovae: upper limit on the electron neutrino component from the non-observation of antineutrinos at SuperKamiokande

    Full text link
    I derive an upper bound on the electron neutrino component of the diffuse supernova neutrino flux from the constraint on the antineutrino component at SuperKamiokande. The connection between antineutrino and neutrino channels is due to the similarity of the muon and tau neutrino and antineutrino fluxes produced in a supernova, and to the conversion of these species into electron neutrinos and antineutrinos inside the star. The limit on the electron neutrino flux is 5.5 cm^-2 s^-1 above 19.3 MeV of neutrino energy, and is stronger than the direct limit from Mont Blanc by three orders of magnitude. It represents the minimal sensitivity required at future direct searches, and is intriguingly close to the reach of the Sudbury Neutrino Observatory (SNO) and of the ICARUS experiment. The electron neutrino flux will have a lower bound if the electron antineutrino flux is measured. Indicatively, the first can be smaller than the second at most by a factor of 2-3 depending on the details of the neutrino spectra at production.Comment: LaTeX, 5 pages, 1 figure. Paper is modified in the presentation (Fig. 1 was replaced with a different plot and Table 1 was expanded), with unchanged results. References added and correcte

    Downscaling data assimilation algorithm with applications to statistical solutions of the Navier-Stokes equations

    Full text link
    Based on a previously introduced downscaling data assimilation algorithm, which employs a nudging term to synchronize the coarse mesh spatial scales, we construct a determining map for recovering the full trajectories from their corresponding coarse mesh spatial trajectories, and investigate its properties. This map is then used to develop a downscaling data assimilation scheme for statistical solutions of the two-dimensional Navier-Stokes equations, where the coarse mesh spatial statistics of the system is obtained from discrete spatial measurements. As a corollary, we deduce that statistical solutions for the Navier-Stokes equations are determined by their coarse mesh spatial distributions. Notably, we present our results in the context of the Navier-Stokes equations; however, the tools are general enough to be implemented for other dissipative evolution equations

    Using visual analytics to develop situation awareness in astrophysics

    Get PDF
    We present a novel collaborative visual analytics application for cognitively overloaded users in the astrophysics domain. The system was developed for scientists who need to analyze heterogeneous, complex data under time pressure, and make predictions and time-critical decisions rapidly and correctly under a constant influx of changing data. The Sunfall Data Taking system utilizes several novel visualization and analysis techniques to enable a team of geographically distributed domain specialists to effectively and remotely maneuver a custom-built instrument under challenging operational conditions. Sunfall Data Taking has been in production use for 2 years by a major international astrophysics collaboration (the largest data volume supernova search currently in operation), and has substantially improved the operational efficiency of its users. We describe the system design process by an interdisciplinary team, the system architecture and the results of an informal usability evaluation of the production system by domain experts in the context of Endsley's three levels of situation awareness
    • 

    corecore