473 research outputs found

    What can we learn by squeezing a liquid

    Full text link
    Relaxation times for different temperatures, T, and specific volumes, V, collapse to a master curve versus TV^g, with g a material constant. The isochoric fragility, m_V, is also a material constant, inversely correlated with g. From these we obtain a 3-parameter function, which fits accurately relaxation times of several glass-formers over the supercooled regime, without any divergence below Tg. Although the 3 parameters depend on the material, only g significant varies; thus, by normalizing material-specific quantities related to g, a universal power law for the dynamics is obtained.Comment: 12 pages, 4 figure

    Thermodynamic Scaling of the Viscosity of Van Der Waals, H-Bonded, and Ionic Liquids

    Full text link
    Viscosities and their temperature, T, and volume, V, dependences are reported for 7 molecular liquids and polymers. In combination with literature viscosity data for 5 other liquids, we show that the superpositioning of relaxation times for various glass-forming materials when expressed as a function of TV^g, where the exponent g is a material constant, can be extended to the viscosity. The latter is usually measured to higher temperatures than the corresponding relaxation times, demonstrating the validity of the thermodynamic scaling throughout the supercooled and higher T regimes. The value of g for a given liquid principally reflects the magnitude of the intermolecular forces (e.g., steepness of the repulsive potential); thus, we find decreasing g in going from van der Waals fluids to ionic liquids. For strongly H-bonded materials, such as low molecular weight polypropylene glycol and water, the superpositioning fails, due to the non-trivial change of chemical structure (degree of H-bonding) with thermodynamic conditions.Comment: 16 pages 7 figure

    Molybdenum isotopes as tracers of sediment recycling into the mantle

    Get PDF
    • …
    corecore