3,172 research outputs found

    Strangeness production in jets from p+p \sqrt{s} = 200 GeV collisions

    Full text link
    Measurements of strangeness production in jets help illuminate the QCD mechanisms in fragmentation. Furthermore, they provide a crucial baseline for heavy-ion studies where modifications in jet chemistry have recently been predicted. We present new results on strange particle production in jets from p+p \sqrt{s} = 200 GeV collisions measured by the STAR experiment. The momentum distributions of the \Lambda, \bar{\Lambda} and K0Short particles are obtained using various jet finding algorithms, and then compared to various models. Strange particle ratios in jets are obtained and compared to values obtained from the inclusive spectra. Finally, we show jets tagged with leading strange baryons and mesons, in order to investigate whether gluon or quark jets can be isolated in this way.Comment: 5 pages, 4 figures, Winter Workshop on Nuclear Dynamics 2010, Jamaic

    Is soft physics entropy driven?

    Full text link
    The soft physics, pT < 2 GeV/c, observables at both RHIC and the SPS have now been mapped out in quite specific detail. From these results there is mounting evidence that this regime is primarily driven by the multiplicity per unit rapidity, dNch/deta. This suggests that the entropy of the system alone is the underlying driving force for many of the global observables measured in heavy-ion collisions. That this is the case and there is an apparent independence on collision energy is surprising. I present the evidence for this multiplicity scaling and use it to make some extremely naive predictions for the soft sector results at the LHC.Comment: Proceedings of Hot Quarks 2006. 8 figures, 6 page

    On saturation of charged hadron production in pp collisions at LHC

    Full text link
    First results on charged hadron transverse momentum spectra in pp collisions obtained by the CMS Collaboration at LHC were analyzed in z-scaling approach. The first LHC data confirm z-scaling. The saturation regime of the scaling function psi(z) observed in pp and antp-pp interactions at lower energy sqrt s = 19-1960 GeV is verified. The saturation of psi(z) for charged hadrons is found down to z=0.05 at the highest energy sqrt s = 2360 GeV reached till now at colliders. A microscopic scenario of hadron production is discussed in connection with search for new signatures of phase transitions in hadron matter. Constituent energy loss and its dependencies on the transverse momentum of charged hadrons and collision energy are estimated. The beam energy scan at LHC in the saturation region is suggested.Comment: LaTeX, 6 pages, 6 figure

    Evidence for chemical equilibration at RHIC

    Get PDF
    This contribution focuses on the results of statistical model calculations at RHIC energies, including recently available experimental data. Previous calculations of particle yield ratios showed good agreement with measurements at SPS and lower energies, suggesting that the composite system possesses a high degree of chemical equilibrium at freeze-out. The effect of feeddown contamination on the model parameters is discussed, and the sensitivity of individual ratios to the model parameters (TT, Ī¼B\mu_B) is illustrated.Comment: Talk presented at Strange Quarks in Matter 2001, Frankfurt, September 24-29, 2001. Proceedings to be published by J. Phys. G. 8 pages with 4 figure

    Strange hadrons as dense matter probes

    Get PDF
    The spectra of strange hadrons have been measured in detail as a function of centrality for a variety of collision systems and energies at RHIC. Recent results are presented and compared to those measured at the SPS. The effects of the system size on strange particle production and kinematics are examined. I place specific emphasis on comparing A-A to pp production and discuss how strangeness can be used to probe the dense matter produced in heavy-ion collisions.Comment: Proceedings of the Strange Quark Matter Conference 200

    Time Dependence of Chemical Freeze-out in Relativistic Heavy Ion Collisions

    Get PDF
    We investigate chemical and thermal freeze-out time dependencies for strange particle production for CERN SPS heavy ion collisions in the framework of a dynamical hadronic transport code. We show that the Lambda yield changes considerably after hadronization in the case of Pb+Pb collisions, whereas for smaller system sizes (e.g. S+S) the direct particle production dominates over production from inelastic rescattering. Chemical freeze-out times for strange baryons in Pb+Pb are smaller than for non-strange baryons, but they are still sufficiently long for hadronic rescattering to contribute significantly to the final Lambda yield. Based on inelastic and elastic cross section estimates we expect the trend of shorter freeze-out times (chemical and kinetic), and thus less particle production after hadronization, to continue for multi-strange baryons.Comment: 10 pages, 7 postscript figure

    Nonextensive statistical effects in the hadron to quark-gluon phase transition

    Full text link
    We investigate the relativistic equation of state of hadronic matter and quark-gluon plasma at finite temperature and baryon density in the framework of the nonextensive statistical mechanics, characterized by power-law quantum distributions. We study the phase transition from hadronic matter to quark-gluon plasma by requiring the Gibbs conditions on the global conservation of baryon number and electric charge fraction. We show that nonextensive statistical effects play a crucial role in the equation of state and in the formation of mixed phase also for small deviations from the standard Boltzmann-Gibbs statistics.Comment: 13 pages, 10 figure

    Creativity and Autonomy in Swarm Intelligence Systems

    Get PDF
    This work introduces two swarm intelligence algorithms -- one mimicking the behaviour of one species of ants (\emph{Leptothorax acervorum}) foraging (a `Stochastic Diffusion Search', SDS) and the other algorithm mimicking the behaviour of birds flocking (a `Particle Swarm Optimiser', PSO) -- and outlines a novel integration strategy exploiting the local search properties of the PSO with global SDS behaviour. The resulting hybrid algorithm is used to sketch novel drawings of an input image, exploliting an artistic tension between the local behaviour of the `birds flocking' - as they seek to follow the input sketch - and the global behaviour of the `ants foraging' - as they seek to encourage the flock to explore novel regions of the canvas. The paper concludes by exploring the putative `creativity' of this hybrid swarm system in the philosophical light of the `rhizome' and Deleuze's well known `Orchid and Wasp' metaphor
    • ā€¦
    corecore