16,769 research outputs found
Report on Conference on Western Water Issues, 17-18 May 1979
Over the last few years several potential conflicts have emerged over the manner in which water is put to beneficial use in the western United States. These potential problems have been further heightened by the western drought of 1976-77 and by the recent upsurge of interest in developing western coal and oil-shale resources. The conference on Western Water Issues, held at the California Institute of Technology, 17-18 May 1979, provided a forum for representatives of industry, agriculture, government, environmental groups, research establishments and universities to exchange ideas on the subject.
Most of the discussions centered on California and the Colorado River Basin. Specific items discussed included climatic fluctuations and predictability of the basic water supply; existing water law and needed changes; economics of water and the lack of real water markets; pending California state legislation (on the Peripheral Canal in the Sacramento-San Joaquin Delta area, and on limits to pumping overdrafted ground water basins); water availability for energy resources development; and competing needs by municipalities, industry, and agriculture. As a summary of the conference, this report should be regarded as a source book to clarify the issues and direct the reader to relevant individuals and references
Charge dynamics and spin blockade in a hybrid double quantum dot in silicon
Electron spin qubits in silicon, whether in quantum dots or in donor atoms,
have long been considered attractive qubits for the implementation of a quantum
computer due to the semiconductor vacuum character of silicon and its
compatibility with the microelectronics industry. While donor electron spins in
silicon provide extremely long coherence times and access to the nuclear spin
via the hyperfine interaction, quantum dots have the complementary advantages
of fast electrical operations, tunability and scalability. Here we present an
approach to a novel hybrid double quantum dot by coupling a donor to a
lithographically patterned artificial atom. Using gate-based rf reflectometry,
we probe the charge stability of this double quantum dot system and the
variation of quantum capacitance at the interdot charge transition. Using
microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterise
the charge dynamics, which reveals a charge T2* of 200 ps and a relaxation time
T1 of 100 ns. Additionally, we demonstrate spin blockade at the inderdot
transition, opening up the possibility to operate this coupled system as a
singlet-triplet qubit or to transfer a coherent spin state between the quantum
dot and the donor electron and nucleus.Comment: 6 pages, 4 figures, supplementary information (3 pages, 4 figures
Coherence of Spin Qubits in Silicon
Given the effectiveness of semiconductor devices for classical computation
one is naturally led to consider semiconductor systems for solid state quantum
information processing. Semiconductors are particularly suitable where local
control of electric fields and charge transport are required. Conventional
semiconductor electronics is built upon these capabilities and has demonstrated
scaling to large complicated arrays of interconnected devices. However, the
requirements for a quantum computer are very different from those for classical
computation, and it is not immediately obvious how best to build one in a
semiconductor. One possible approach is to use spins as qubits: of nuclei, of
electrons, or both in combination. Long qubit coherence times are a
prerequisite for quantum computing, and in this paper we will discuss
measurements of spin coherence in silicon. The results are encouraging - both
electrons bound to donors and the donor nuclei exhibit low decoherence under
the right circumstances. Doped silicon thus appears to pass the first test on
the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200
Enhanced hippocampal long-term potentiation and spatial learning in aged 11ß-hydroxysteroid dehydrogenase type 1 knock-out mice
Glucocorticoids are pivotal in the maintenance of memory and cognitive functions as well as other essential physiological processes including energy metabolism, stress responses, and cell proliferation. Normal aging in both rodents and humans is often characterized by elevated glucocorticoid levels that correlate with hippocampus-dependent memory impairments. 11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies local intracellular ("intracrine") glucocorticoid action; in the brain it is highly expressed in the hippocampus. We investigated whether the impact of 11ß-HSD1 deficiency in knock-out mice (congenic on C57BL/6J strain) on cognitive function with aging reflects direct CNS or indirect effects of altered peripheral insulin-glucose metabolism. Spatial learning and memory was enhanced in 12 month "middle-aged" and 24 month "aged" 11ß-HSD1<sup>–/–</sup> mice compared with age-matched congenic controls. These effects were not caused by alterations in other cognitive (working memory in a spontaneous alternation task) or affective domains (anxiety-related behaviors), to changes in plasma corticosterone or glucose levels, or to altered age-related pathologies in 11ß-HSD1<sup>–/–</sup> mice. Young 11ß-HSD1<sup>–/–</sup> mice showed significantly increased newborn cell proliferation in the dentate gyrus, but this was not maintained into aging. Long-term potentiation was significantly enhanced in subfield CA1 of hippocampal slices from aged 11ß-HSD1<sup>–/–</sup> mice. These data suggest that 11ß-HSD1 deficiency enhances synaptic potentiation in the aged hippocampus and this may underlie the better maintenance of learning and memory with aging, which occurs in the absence of increased neurogenesis
No equity, no triple aim: strategic proposals to advance health equity in a volatile policy environment
Health professionals, including social workers, community health workers, public health workers, and licensed health care providers, share common interests and responsibilities in promoting health equity and improving social determinants of health—the conditions in which we live, work, play, and learn. This article summarizes underlying causes of health inequity and comparatively poor health outcomes in the U.S. It describes barriers to realizing the hope embedded in the 2010 Patient Protection and Affordable Care Act that moving away from fee-for-service payments will naturally drive care upstream as providers respond to greater financial risk for the health of their patients by undertaking greater prevention efforts. The article asserts that health equity should serve as the guiding framework for achieving the Triple Aim of health care reform. It outlines practical opportunities for improving care and for promoting stronger efforts to address social determinants of health. These proposals include developing a dashboard of measures to assist providers committed to health equity and community-based prevention and to promote institutional accountability for addressing socio-economic factors that influence health
Stark shift and field ionization of arsenic donors in Si-SOI structures
We develop an efficient back gate for silicon-on-insulator (SOI) devices
operating at cryogenic temperatures, and measure the quadratic hyperfine Stark
shift parameter of arsenic donors in isotopically purified Si-SOI layers
using such structures. The back gate is implemented using MeV ion implantation
through the SOI layer forming a metallic electrode in the handle wafer,
enabling large and uniform electric fields up to 2 V/m to be
applied across the SOI layer. Utilizing this structure we measure the Stark
shift parameters of arsenic donors embedded in the Si SOI layer and find
a contact hyperfine Stark parameter of m/V. We also demonstrate electric-field driven dopant ionization in
the SOI device layer, measured by electron spin resonance.Comment: 5 pages, 3 figure
Global Optical Control of a Quantum Spin Chain
Quantum processors which combine the long decoherence times of spin qubits
together with fast optical manipulation of excitons have recently been the
subject of several proposals. I show here that arbitrary single- and entangling
two-qubit gates can be performed in a chain of perpetually coupled spin qubits
solely by using laser pulses to excite higher lying states. It is also
demonstrated that universal quantum computing is possible even if these pulses
are applied {\it globally} to a chain; by employing a repeating pattern of four
distinct qubit units the need for individual qubit addressing is removed. Some
current experimental qubit systems would lend themselves to implementing this
idea.Comment: 5 pages, 3 figure
Complementary Methods for Volcanic Seismic Source Discrimination
ABSTRACT FINAL ID: V53E-2673
TITLE: Complementary Methods for Volcanic Seismic Source Discrimination
SESSION TYPE: Poster
SESSION TITLE: V53E. Surveillance of Volcanic Unrest: New Developments in Multidisciplinary Monitoring Methods IV Posters
AUTHORS (FIRST NAME, LAST NAME): Charlotte A Rowe1, Susanna M R Falsaperla2, Emily Morton3, Horst K Langer2, Boris Behncke2
INSTITUTIONS (ALL): 1. Los Alamos Natl Lab, Los Alamos, NM, United States.
2. Istituto Nazionale di Geofisica e Volcanologia, Catania, Italy.
3. Earth and Environmental Sciences, New Mexico Institute of Mining and Technology, Socorro, NM, United States.
Title of Team:
ABSTRACT BODY: We explore the success rates of detection and classification algorithms as applied to seismic signals from active volcanoes. The subspace detection method has shown some success in identifying repeating (but not identical) signals from seismic swarm sources, as well as pulling out nonvolcanic long period events within subduction zone tremor. We continue the exploration of this technique as applied to both discrete events and variations within volcanic tremor to determine optimal situations for its use.
We will demonstrate both three-dimensional and subband applications both on raw waveforms and derived features such as skewness and kurtosis. The application can be used in both a supervised (select templates and compare) as well as unsupervised (cross-compare all samples and apply clustering to the matrix of comparisons).
We compare the method to that of the KKAnalysis tool, which uses a self-organizing map approach to unsupervised clustering for feature vectors derived from the seismic waveforms. We will present a comparison of this method as applied to waveform features, spectral features and time-varying higher-order statistics as well as signal polarization, to elucidate the tools which show the best promise for problematic discrimination tasks
COVID-19 Impact on Latinx Families within the RVA Breathes Program
RVA Breathes is a community-based asthma intervention program that aims to reduce asthma disparities among 5 to 11-year-old children in Richmond, Virginia. Prior to the pandemic, Latinx children faced greater disparities in asthma treatment and morbidity than non-Latinx White children. During the pandemic, there is evidence to suggest that these disparities may have been further exacerbated. Specifically, research shows that COVID-19 health disparities among Latinx individuals arose due to social inequities, such as poverty, living conditions, lack of access to health care, language barriers, and employment. The current study provides an overview of responses from 20 Latinx caregivers to pandemic-related questions asked during intervention sessions.https://scholarscompass.vcu.edu/uresposters/1445/thumbnail.jp
- …