16,769 research outputs found

    Report on Conference on Western Water Issues, 17-18 May 1979

    Get PDF
    Over the last few years several potential conflicts have emerged over the manner in which water is put to beneficial use in the western United States. These potential problems have been further heightened by the western drought of 1976-77 and by the recent upsurge of interest in developing western coal and oil-shale resources. The conference on Western Water Issues, held at the California Institute of Technology, 17-18 May 1979, provided a forum for representatives of industry, agriculture, government, environmental groups, research establishments and universities to exchange ideas on the subject. Most of the discussions centered on California and the Colorado River Basin. Specific items discussed included climatic fluctuations and predictability of the basic water supply; existing water law and needed changes; economics of water and the lack of real water markets; pending California state legislation (on the Peripheral Canal in the Sacramento-San Joaquin Delta area, and on limits to pumping overdrafted ground water basins); water availability for energy resources development; and competing needs by municipalities, industry, and agriculture. As a summary of the conference, this report should be regarded as a source book to clarify the issues and direct the reader to relevant individuals and references

    Charge dynamics and spin blockade in a hybrid double quantum dot in silicon

    Get PDF
    Electron spin qubits in silicon, whether in quantum dots or in donor atoms, have long been considered attractive qubits for the implementation of a quantum computer due to the semiconductor vacuum character of silicon and its compatibility with the microelectronics industry. While donor electron spins in silicon provide extremely long coherence times and access to the nuclear spin via the hyperfine interaction, quantum dots have the complementary advantages of fast electrical operations, tunability and scalability. Here we present an approach to a novel hybrid double quantum dot by coupling a donor to a lithographically patterned artificial atom. Using gate-based rf reflectometry, we probe the charge stability of this double quantum dot system and the variation of quantum capacitance at the interdot charge transition. Using microwave spectroscopy, we find a tunnel coupling of 2.7 GHz and characterise the charge dynamics, which reveals a charge T2* of 200 ps and a relaxation time T1 of 100 ns. Additionally, we demonstrate spin blockade at the inderdot transition, opening up the possibility to operate this coupled system as a singlet-triplet qubit or to transfer a coherent spin state between the quantum dot and the donor electron and nucleus.Comment: 6 pages, 4 figures, supplementary information (3 pages, 4 figures

    Coherence of Spin Qubits in Silicon

    Full text link
    Given the effectiveness of semiconductor devices for classical computation one is naturally led to consider semiconductor systems for solid state quantum information processing. Semiconductors are particularly suitable where local control of electric fields and charge transport are required. Conventional semiconductor electronics is built upon these capabilities and has demonstrated scaling to large complicated arrays of interconnected devices. However, the requirements for a quantum computer are very different from those for classical computation, and it is not immediately obvious how best to build one in a semiconductor. One possible approach is to use spins as qubits: of nuclei, of electrons, or both in combination. Long qubit coherence times are a prerequisite for quantum computing, and in this paper we will discuss measurements of spin coherence in silicon. The results are encouraging - both electrons bound to donors and the donor nuclei exhibit low decoherence under the right circumstances. Doped silicon thus appears to pass the first test on the road to a quantum computer.Comment: Submitted to J Cond Matter on Nov 15th, 200

    Enhanced hippocampal long-term potentiation and spatial learning in aged 11ß-hydroxysteroid dehydrogenase type 1 knock-out mice

    Get PDF
    Glucocorticoids are pivotal in the maintenance of memory and cognitive functions as well as other essential physiological processes including energy metabolism, stress responses, and cell proliferation. Normal aging in both rodents and humans is often characterized by elevated glucocorticoid levels that correlate with hippocampus-dependent memory impairments. 11ß-Hydroxysteroid dehydrogenase type 1 (11ß-HSD1) amplifies local intracellular ("intracrine") glucocorticoid action; in the brain it is highly expressed in the hippocampus. We investigated whether the impact of 11ß-HSD1 deficiency in knock-out mice (congenic on C57BL/6J strain) on cognitive function with aging reflects direct CNS or indirect effects of altered peripheral insulin-glucose metabolism. Spatial learning and memory was enhanced in 12 month "middle-aged" and 24 month "aged" 11ß-HSD1<sup>–/–</sup> mice compared with age-matched congenic controls. These effects were not caused by alterations in other cognitive (working memory in a spontaneous alternation task) or affective domains (anxiety-related behaviors), to changes in plasma corticosterone or glucose levels, or to altered age-related pathologies in 11ß-HSD1<sup>–/–</sup> mice. Young 11ß-HSD1<sup>–/–</sup> mice showed significantly increased newborn cell proliferation in the dentate gyrus, but this was not maintained into aging. Long-term potentiation was significantly enhanced in subfield CA1 of hippocampal slices from aged 11ß-HSD1<sup>–/–</sup> mice. These data suggest that 11ß-HSD1 deficiency enhances synaptic potentiation in the aged hippocampus and this may underlie the better maintenance of learning and memory with aging, which occurs in the absence of increased neurogenesis

    No equity, no triple aim: strategic proposals to advance health equity in a volatile policy environment

    Get PDF
    Health professionals, including social workers, community health workers, public health workers, and licensed health care providers, share common interests and responsibilities in promoting health equity and improving social determinants of health—the conditions in which we live, work, play, and learn. This article summarizes underlying causes of health inequity and comparatively poor health outcomes in the U.S. It describes barriers to realizing the hope embedded in the 2010 Patient Protection and Affordable Care Act that moving away from fee-for-service payments will naturally drive care upstream as providers respond to greater financial risk for the health of their patients by undertaking greater prevention efforts. The article asserts that health equity should serve as the guiding framework for achieving the Triple Aim of health care reform. It outlines practical opportunities for improving care and for promoting stronger efforts to address social determinants of health. These proposals include developing a dashboard of measures to assist providers committed to health equity and community-based prevention and to promote institutional accountability for addressing socio-economic factors that influence health

    Stark shift and field ionization of arsenic donors in 28^{28}Si-SOI structures

    Full text link
    We develop an efficient back gate for silicon-on-insulator (SOI) devices operating at cryogenic temperatures, and measure the quadratic hyperfine Stark shift parameter of arsenic donors in isotopically purified 28^{28}Si-SOI layers using such structures. The back gate is implemented using MeV ion implantation through the SOI layer forming a metallic electrode in the handle wafer, enabling large and uniform electric fields up to ∼\sim 2 V/μ\mum to be applied across the SOI layer. Utilizing this structure we measure the Stark shift parameters of arsenic donors embedded in the 28^{28}Si SOI layer and find a contact hyperfine Stark parameter of ηa=−1.9±0.2×10−3μ\eta_a=-1.9\pm0.2\times10^{-3} \mum2^2/V2^2. We also demonstrate electric-field driven dopant ionization in the SOI device layer, measured by electron spin resonance.Comment: 5 pages, 3 figure

    Global Optical Control of a Quantum Spin Chain

    Full text link
    Quantum processors which combine the long decoherence times of spin qubits together with fast optical manipulation of excitons have recently been the subject of several proposals. I show here that arbitrary single- and entangling two-qubit gates can be performed in a chain of perpetually coupled spin qubits solely by using laser pulses to excite higher lying states. It is also demonstrated that universal quantum computing is possible even if these pulses are applied {\it globally} to a chain; by employing a repeating pattern of four distinct qubit units the need for individual qubit addressing is removed. Some current experimental qubit systems would lend themselves to implementing this idea.Comment: 5 pages, 3 figure

    Complementary Methods for Volcanic Seismic Source Discrimination

    Get PDF
    ABSTRACT FINAL ID: V53E-2673 TITLE: Complementary Methods for Volcanic Seismic Source Discrimination SESSION TYPE: Poster SESSION TITLE: V53E. Surveillance of Volcanic Unrest: New Developments in Multidisciplinary Monitoring Methods IV Posters AUTHORS (FIRST NAME, LAST NAME): Charlotte A Rowe1, Susanna M R Falsaperla2, Emily Morton3, Horst K Langer2, Boris Behncke2 INSTITUTIONS (ALL): 1. Los Alamos Natl Lab, Los Alamos, NM, United States. 2. Istituto Nazionale di Geofisica e Volcanologia, Catania, Italy. 3. Earth and Environmental Sciences, New Mexico Institute of Mining and Technology, Socorro, NM, United States. Title of Team: ABSTRACT BODY: We explore the success rates of detection and classification algorithms as applied to seismic signals from active volcanoes. The subspace detection method has shown some success in identifying repeating (but not identical) signals from seismic swarm sources, as well as pulling out nonvolcanic long period events within subduction zone tremor. We continue the exploration of this technique as applied to both discrete events and variations within volcanic tremor to determine optimal situations for its use. We will demonstrate both three-dimensional and subband applications both on raw waveforms and derived features such as skewness and kurtosis. The application can be used in both a supervised (select templates and compare) as well as unsupervised (cross-compare all samples and apply clustering to the matrix of comparisons). We compare the method to that of the KKAnalysis tool, which uses a self-organizing map approach to unsupervised clustering for feature vectors derived from the seismic waveforms. We will present a comparison of this method as applied to waveform features, spectral features and time-varying higher-order statistics as well as signal polarization, to elucidate the tools which show the best promise for problematic discrimination tasks

    COVID-19 Impact on Latinx Families within the RVA Breathes Program

    Get PDF
    RVA Breathes is a community-based asthma intervention program that aims to reduce asthma disparities among 5 to 11-year-old children in Richmond, Virginia. Prior to the pandemic, Latinx children faced greater disparities in asthma treatment and morbidity than non-Latinx White children. During the pandemic, there is evidence to suggest that these disparities may have been further exacerbated. Specifically, research shows that COVID-19 health disparities among Latinx individuals arose due to social inequities, such as poverty, living conditions, lack of access to health care, language barriers, and employment. The current study provides an overview of responses from 20 Latinx caregivers to pandemic-related questions asked during intervention sessions.https://scholarscompass.vcu.edu/uresposters/1445/thumbnail.jp
    • …
    corecore