75,286 research outputs found
Neutrino Capture and r-Process Nucleosynthesis
We explore neutrino capture during r-process nucleosynthesis in
neutrino-driven ejecta from nascent neutron stars. We focus on the interplay
between charged-current weak interactions and element synthesis, and we
delineate the important role of equilibrium nuclear dynamics. During the period
of coexistence of free nucleons and light and/or heavy nuclei, electron
neutrino capture inhibits the r-process. At all stages, capture on free
neutrons has a larger impact than capture on nuclei. However, neutrino capture
on heavey nuclei by itself, if it is very strong, is also detrimental to the
r-process until large nuclear equilibrium clusters break down and the classical
neutron-capture phase of the r-process begins. The sensitivity of the r-process
to neutrino irradiation means that neutrino-capture effects can strongly
constrain the r-process site, neutrino physics, or both. These results apply
also to r-process scenarios other than neutrino-heated winds.Comment: 20 pages, 17 figures, Submitted to Physical Review
Nucleosynthesis in Fast Expansions of High-Entropy, Proton Rich Matter
We demonstrate that nucleosynthesis in rapid, high-entropy expansions of
proton-rich matter from high temperature and density can result in a wider
variety of abundance patterns than heretofore appreciated. In particular, such
expansions can produce iron-group nuclides, p-process nuclei, or even heavy,
neutron-rich isotopes. Such diversity arises because the nucleosynthesis enters
a little explored regime in which the free nucleons are not in equilibrium with
the abundant alpha particles. This allows nuclei significantly heavier than
iron to form in t he presence of abundant free nucleons early in the expansion.
As the temperature drops, nucleons increasingly assemble into alpha particles
and heavier nuclei. If the assembly is efficient, the resulting depletion of
free neutrons allows disintegrat ion flows to drive nuclei back down to iron
and nickel. If this assembly is inefficient, then the large abundance of free
nucleons prevents the disintegration flows and leaves a distribution of heavy
nuclei after reaction freezeout. For cases in between, an intermediate
abundance distribution, enriched in p-process isotopes, is frozen out. These
last expansions may contribute to the solar system's supply of the p-process
nuclides if mildly proton-rich, high-entropy matter is ejected from
proto-neutron stars winds or other astrophysical sites. Also sign ificant is
the fact that, because the nucleosynthesis is primary, the signature of this
nucleosyn thesis may be evident in metal poor stars.Comment: 11 pages, 2 tables, 1 figure. Submitted to ApJ Letter
Cancer therapeutic potential of combinatorial immuno- and vaso-modulatory interventions
Currently, most of the basic mechanisms governing tumor-immune system
interactions, in combination with modulations of tumor-associated vasculature,
are far from being completely understood. Here, we propose a mathematical model
of vascularized tumor growth, where the main novelty is the modeling of the
interplay between functional tumor vasculature and effector cell recruitment
dynamics. Parameters are calibrated on the basis of different in vivo
immunocompromised Rag1-/- and wild-type (WT) BALB/c murine tumor growth
experiments. The model analysis supports that tumor vasculature normalization
can be a plausible and effective strategy to treat cancer when combined with
appropriate immuno-stimulations. We find that improved levels of functional
tumor vasculature, potentially mediated by normalization or stress alleviation
strategies, can provide beneficial outcomes in terms of tumor burden reduction
and growth control. Normalization of tumor blood vessels opens a therapeutic
window of opportunity to augment the antitumor immune responses, as well as to
reduce the intratumoral immunosuppression and induced-hypoxia due to vascular
abnormalities. The potential success of normalizing tumor-associated
vasculature closely depends on the effector cell recruitment dynamics and tumor
sizes. Furthermore, an arbitrary increase of initial effector cell
concentration does not necessarily imply a better tumor control. We evidence
the existence of an optimal concentration range of effector cells for tumor
shrinkage. Based on these findings, we suggest a theory-driven therapeutic
proposal that optimally combines immuno- and vaso-modulatory interventions
- …