513 research outputs found

    Preferential antiferromagnetic coupling of vacancies in graphene on SiO_2: Electron spin resonance and scanning tunneling spectroscopy

    Full text link
    Monolayer graphene grown by chemical vapor deposition and transferred to SiO_2 is used to introduce vacancies by Ar^+ ion bombardment at a kinetic energy of 50 eV. The density of defects visible in scanning tunneling microscopy (STM) is considerably lower than the ion fluence implying that most of the defects are single vacancies. The vacancies are characterized by scanning tunneling spectroscopy (STS) on graphene and HOPG exhibiting a peak close to the Fermi level. The peak persists after air exposure up to 180 min, albeit getting broader. After air exposure for less than 60 min, electron spin resonance (ESR) at 9.6 GHz is performed. For an ion flux of 10/nm^2, we find a signal corresponding to a g-factor of 2.001-2.003 and a spin density of 1-2 spins/nm^2. The ESR signal consists of a mixture of a Gaussian and a Lorentzian of equal weight exhibiting a width down to 0.17 mT, which, however, depends on details of the sample preparation. The g-factor anisotropy is about 0.02%. Temperature dependent measurements reveal antiferromagnetic correlations with a Curie-Weiss temperature of -10 K. Albeit the electrical conductivity of graphene is significantly reduced by ion bombardment, the spin resonance induced change in conductivity is below 10^{-5}.Comment: 10 pages, 5 figures, discussion on STM images in the literature of defects in graphene adde

    Resistivity and Hall effect of LiFeAs: Evidence for electron-electron scattering

    Full text link
    LiFeAs is unique among the broad family of FeAs-based superconductors, because it is superconducting with a rather large Tc≃18T_c\simeq 18 K under ambient conditions although it is a stoichiometric compound. We studied the electrical transport on a high-quality single crystal. The resistivity shows quadratic temperature dependence at low temperature giving evidence for strong electron-electron scattering and a tendency towards saturation around room temperature. The Hall constant is negative and changes with temperature, what most probably arises from a van Hove singularity close to the Fermi energy in one of the hole-like bands. Using band structure calculations based on angular resolved photoemission spectra we are able to reproduce all the basic features of both the resistivity as well as the Hall effect data.Comment: 6 pages, 3 figures included; V2 has been considerably revised and contain a more detailed analysis of the Hall effect dat

    Disorder-induced Spin Gap in the Zigzag Spin-1/2 Chain Cuprate Sr_{0.9}Ca_{0.1}CuO_2

    Full text link
    We report a comparative study of 63Cu Nuclear Magnetic Resonance spin lattice relaxation rates, T_1^{-1}, on undoped SrCuO_2 and Ca doped Sr_{0.9}Ca_{0.1}CuO_2 spin chain compounds. A temperature independent T_1^{-1} is observed for SrCuO_2 as expected for an S=1/2 Heisenberg chain. Surprisingly, we observe an exponential decrease of T_1^{-1} for T < 90,K in the Ca-doped sample evidencing the opening of a spin gap. The data analysis within the J_1-J_2 Heisenberg model employing density-matrix renormalization group calculations suggests an impurity driven small alternation of the J_2-exchange coupling as a possible cause of the spin gap.Comment: 4 pages, 4 figure

    Crystal and magnetic structure of the oxypnictide superconductor LaO(1-x)FxFeAs: evidence for magnetoelastic coupling

    Full text link
    High-resolution and high-flux neutron as well as X-ray powder-diffraction experiments were performed on the oxypnictide series LaO(1-x)FxFeAs with 0<x<0.15 in order to study the crystal and magnetic structure. The magnetic symmetry of the undoped compound corresponds to those reported for ReOFeAs (with Re a rare earth) and for AFe2As2 (A=Ba, Sr) materials. We find an ordered magnetic moment of 0.63(1)muB at 2 K in LaOFeAs, which is significantly larger than the values previously reported for this compound. A sizable ordered magnetic moment is observed up to a F-doping of 4.5% whereas there is no magnetic order for a sample with a F concentration of x=0.06. In the undoped sample, several interatomic distances and FeAs4 tetrahedra angles exhibit pronounced anomalies connected with the broad structural transition and with the onset of magnetism supporting the idea of strong magneto-elastic coupling in this material.Comment: 8 pages, 7 figures, regular articl

    Specific heat of Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2 single crystals: unconventional s±_\pm multi-band superconductivity with intermediate repulsive interband coupling and sizable attractive intraband couplings

    Full text link
    We report a low-temperature specific heat study of high-quality single crystals of the heavily hole doped superconductor Ca0.32_{0.32}Na0.68_{0.68}Fe2_2As2_2. This compound exhibits bulk superconductivity with a transition temperature Tc≈34T_c \approx 34\,K, which is evident from the magnetization, transport, and specific heat measurements. The zero field data manifests a significant electronic specific heat in the normal state with a Sommerfeld coefficient γ≈53\gamma \approx 53 mJ/mol K2^{2}. Using a multi-band Eliashberg analysis, we demonstrate that the dependence of the zero field specific heat in the superconducting state is well described by a three-band model with an unconventional s±_\pm pairing symmetry and gap magnitudes Δi\Delta_i of approximately 2.35, 7.48, and -7.50 meV. Our analysis indicates a non-negligible attractive intraband coupling,which contributes significantly to the relatively high value of TcT_c. The Fermi surface averaged repulsive and attractive coupling strengths are of comparable size and outside the strong coupling limit frequently adopted for describing high-TcT_c iron pnictide superconductors. We further infer a total mass renormalization of the order of five, including the effects of correlations and electron-boson interactions.Comment: 8 Figures, Submitted to PR

    Photoemission induced gating of topological insulator

    Full text link
    The recently discovered topological insulators exhibit topologically protected metallic surface states which are interesting from the fundamental point of view and could be useful for various applications if an appropriate electronic gating can be realized. Our photoemission study of Cu intercalated Bi2Se3 shows that the surface states occupancy in this material can be tuned by changing the photon energy and understood as a photoemission induced gating effect. Our finding provides an effective tool to investigate the new physics coming from the topological surface states and suggests the intercalation as a recipe for synthesis of the material suitable for electronic applications.Comment: + resistivity data and some discussio

    Anomalously enhanced photoemission from the Dirac point and symmetry of the self-energy variations for the surface states in Bi2Se3

    Full text link
    Accurate analysis of the photoemission intensity from the surface states of Bi2Se3 reveals two unusual features: spectral line asymmetry and anomalously enhanced photoemission from the Dirac point. The former indicates a certain symmetry of a scattering process, which results in strongly k\omega-dependent contribution to the imaginary part of the self-energy that changes sign while crossing both the dispersion curves and the energy of the Dirac point. The latter is hard to describe by one particle spectral function while a final state interference seems to be plausible explanation
    • …
    corecore