2,073 research outputs found

    A NICMOS Direct Imaging Search for Giant Planets around the Single White Dwarfs in the Hyades

    Full text link
    We report preliminary results from our search for massive giant planets (6-12 Jupiter masses) around the known seven single white dwarfs in the Hyades cluster at sub-arcsec separations. At an age of 625 Myr, the white dwarfs had progenitor masses of about 3 solar masses, and massive gaseous giant planets should have formed in the massive circumstellar disks around these ex-Herbig A0 stars, probably at orbital separations similar or slightly larger than that of Jupiter. Such planets would have survived the post-Main-Sequence mass loss of the parent star and would have migrated outward adiabatically to a distance of about 25 AU. At the distance of the Hyades (45 pc) this corresponds to an angular separation of 0.5 arcsec. J and H magnitudes of these giants are in the range of 20.5-23.3 mag, which can be resolved with NICMOS. The achieved sensitivities and contrast ratios agree well with simulations. Preliminary evaluation of the NICMOS data set did not reveal any evidence for neither planetary mass companions with masses down to about 10 Jupiter masses nor brown dwarfs around any of the seven white dwarfs for separations larger than 0.5 arcsec.Comment: 14th European Workshop on White Dwarf

    The pathological diagnosis of nerve biopsies: a practical approach

    Get PDF
    The approach to the neuropathological assessment of nerve biopsies is the main focus of this review. Nerve biopsies are invasive diagnostic procedures resulting in a permanent neurological deficit, and are therefore carried out only following an in-depth clinical assessment including laboratory, imaging, electrophysiological, and where appropriate also genetic studies. This review will outline the key diagnostic approaches and will discuss neuropathies relevant in clinical practice, caused by vasculitis, inflammatory demyelination, dysproteinaemic, amyloid, toxic agents, and neuropathies due to genetic conditions

    Prion disease: experimental models and reality

    Get PDF
    The understanding of the pathogenesis and mechanisms of diseases requires a multidisciplinary approach, involving clinical observation, correlation to pathological processes, and modelling of disease mechanisms. It is an inherent challenge, and arguably impossible to generate model systems that can faithfully recapitulate all aspects of human disease. It is, therefore, important to be aware of the potentials and also the limitations of specific model systems. Model systems are usually designed to recapitulate only specific aspects of the disease, such as a pathological phenotype, a pathomechanism, or to test a hypothesis. Here, we evaluate and discuss model systems that were generated to understand clinical, pathological, genetic, biochemical, and epidemiological aspects of prion diseases. Whilst clinical research and studies on human tissue are an essential component of prion research, much of the understanding of the mechanisms governing transmission, replication, and toxicity comes from in vitro and in vivo studies. As with other neurodegenerative diseases caused by protein misfolding, the pathogenesis of prion disease is complex, full of conundra and contradictions. We will give here a historical overview of the use of models of prion disease, how they have evolved alongside the scientific questions, and how advancements in technologies have pushed the boundaries of our understanding of prion biology

    Neurological update: gliomas and other primary brain tumours in adults.

    Get PDF
    The emerging understanding of molecular changes in a wide range of brain tumours has led to a significant shift in how these tumours are diagnosed, managed and treated. This article will provide a hands-on overview of the relevant biomarkers and their association with newly defined biological tumour entities

    Binarity of Transit Host Stars - Implications on Planetary Parameters

    Full text link
    Straight-forward derivation of planetary parameters can only be achieved in transiting planetary systems. However, planetary attributes such as radius and mass strongly depend on stellar host parameters. Discovering a transit host star to be multiple leads to a necessary revision of the derived stellar and planetary parameters. Based on our observations of 14 transiting exoplanet hosts, we derive parameters of the individual components of three transit host stars (WASP-2, TrES-2, and TrES-4) which we detected to be binaries. Two of these have not been known to be multiple before. Parameters of the corresponding exoplanets are revised. High-resolution "Lucky Imaging" with AstraLux at the 2.2m Calar Alto telescope provided near diffraction limited images in i' and z' passbands. These results have been combined with existing planetary data in order to recalibrate planetary attributes. Despite the faintness (delta mag ~ 4) of the discovered stellar companions to TrES-2, TrES-4, and WASP-2, light-curve deduced parameters change by up to more than 1sigma. We discuss a possible relation between binary separation and planetary properties, which - if confirmed - could hint at the influence of binarity on the planet formation process.Comment: 9 pages, 3 Figures. Accepted by A&

    A Spectroscopic Survey of Subarcsecond Binaries in the Taurus-Auriga Dark Cloud with the Hubble Space Telescope

    Full text link
    We report the results of a spectroscopic survey of 20 close T Tauri binaries in the Taurus-Auriga dark cloud where the separations between primaries and their secondaries are less than the typical size of a circumstellar disk around a young star. Analysis of low-resolution and medium-resolution STIS spectra yields the stellar luminosities, reddenings, ages, masses, mass accretion rates, IR excesses, and emission line luminosities for each star in each pair. We examine the ability of IR color excesses, H-alpha equivalent widths, [O I] emission, and veiling to distinguish between weak emission and classical T Tauri stars. Four pairs have one cTTs and one wTTs; the cTTs is the primary in three of these systems. This frequency of mixed pairs among the close T Tauri binaries is similar to the frequency of mixed pairs in wider young binaries. Extinctions within pairs are usually similar; however, the secondary is more heavily reddened than the primary in some systems, where it may be viewed through the primary's disk. Mass accretion rates of primaries and secondaries are strongly correlated, and H-alpha luminosities, IR excesses, and ages also correlate within pairs. Primaries tend to have somewhat larger accretion rates than their secondaries do, and are typically slightly older than their secondaries according to three different sets of modern pre-main-sequence evolutionary tracks. Age differences for XZ Tau and FS Tau, systems embedded in reflection nebulae, are striking; the secondary in each pair is less massive but more luminous than the primary. The stellar masses of the UY Aur and GG Tau binaries measured from their rotating molecular disks are about 30% larger than the masses inferred from the spectra and evolutionary tracks

    The GRAVITY fringe tracker: correlation between optical path residuals and atmospheric parameters

    Full text link
    After the first year of observations with the GRAVITY fringe tracker, we compute correlations between the optical path residuals and atmospheric and astronomical parameters. The median residuals of the optical path residuals are 180 nm on the ATs and 270 nm on the UTs. The residuals are uncorrelated with the target magnitudes for Kmag below 5.5 on ATs (9 on UTs). The correlation with the coherence time is however extremely clear, with a drop-off in fringe tracking performance below 3 ms.Comment: submitted to SPIE Astronomical Telescopes & Instrumentation 201

    The Peak Brightness and Spatial Distribution of AGB Stars Near the Nucleus of M32

    Get PDF
    The bright stellar content near the center of the Local Group elliptical galaxy M32 is investigated with 0.12 arcsec FWHM H and K images obtained with the Gemini Mauna Kea telescope. Stars with K = 15.5, which are likely evolving near the tip of the asymptotic giant branch (AGB), are resolved to within 2 arcsec of the nucleus, and it is concluded that the peak stellar brightness near the center of M32 is similar to that in the outer regions of the galaxy. Moreover, the projected density of bright AGB stars follows the visible light profile to within 2 arcsec of the nucleus, indicating that the brightest stars are well mixed throughout the galaxy. Thus, there is no evidence for an age gradient, and the radial variations in spectroscopic indices and ultraviolet colors that have been detected previously must be due to metallicity and/or some other parameter. We suggest that either the bright AGB stars formed as part of a highly uniform and coherent galaxy-wide episode of star formation, or they originated in a separate system that merged with M32.Comment: 9 pages of text, 3 figures. ApJ (Letters) in pres
    corecore