3 research outputs found

    Laboratory-based hyperspectral image analysis for predicting soil carbon, nitrogen and their isotopic compositions

    No full text
    The common methods of determining soil carbon (C), nitrogen (N) and their isotopic compositions (δ13C and δ15N) are expensive and time-consuming. Therefore, alternative low-cost and rapid methods are sought to address this issue. This study aimed to investigate the potential of hyperspectral image analysis to predict soil total carbon (TC), total nitrogen (TN), δ13C and δ15N. Hyperspectral images were captured from 96 ground soil samples using a laboratory-based visible to near-infrared (VNIR) hyperspectral camera in the spectral range of 400–1000 nm. Partial least squares regression (PLSR) models were developed to correlate the values of TC, TN, δ13C and δ15N, obtained from isotope ratio mass spectrometry method, with their spectral reflectance. The developed models provided acceptable predictions with high coefficient of determination (R2c) and low root mean square error (RMSEc) of calibration set for TC (R2c = 0.82; RMSEc = 1.08%), TN (R2c = 0.87; RMSEc = 0.02%), δ13C (R2c = 0.82; RMSEc = 0.27‰) and δ15N (R2c = 0.90; RMSEc = 0.29‰). The prediction abilities of the models were then evaluated using the spectra of an external test set (24 samples). The models provided excellent predictions with high R2t and ratio of performance to deviation (RPD) of test set for TC (R2t = 0.76; RPD = 2.02), TN (R2t = 0.86; RPD = 2.08), δ13C (R2t = 0.80; RPD = 2.00) and δ15N (R2t = 0.81; RPD = 1.94). The results indicated that the laboratory-based hyperspectral image analysis has the potential to predict soil TC, TN, δ13C and δ15N. © 2018 Elsevier B.V

    Using laboratory-based hyperspectral imaging method to determine carbon functional group distributions in decomposing forest litterfall

    No full text
    Studying C functional group distributions in decomposing litterfall samples is one of the common methods of studying litterfall decomposition processes. However, the methods of studying the C functional group distributions, such as 13C NMR spectroscopy, are expensive and time consuming and new rapid and inexpensive technologies should be sought. Therefore, this study examined whether laboratory-based hyperspectral image analysis can be used to predict C functional group distributions in decomposing litterfall samples. Hyperspectral images were captured from ground decomposing litterfall samples in the visible to near infrared (VNIR) spectral range of 400–1000 nm. Partial least-square regression (PLSR) and artificial neural network (ANN) models were used to correlate the VNIR reflectance data measured from the litterfall samples with their C functional group distributions determined using 13C NMR spectroscopy. The results showed that alkyl-C, O,N-alkyl-C, di-O-alkyl-C1, di-O-alkyl-C2, aryl-C1, aryl-C2 and carboxyl derivatives could be acceptably predicted using the PLSR model, with R2 values of 0.72, 0.73, 0.71, 0.74, 0.76, 0.75 and 0.63 and ratio of prediction to deviation (RPD) values of 1.86, 1.82, 1.78, 1.71, 1.90, 1.76 and 1.43, respectively. Predicted O,N-alkyl-C, di-O-alkyl-C1, di-O-alkyl-C2, aryl-C1 and aryl-C2 using the ANN model provided R2 values of 0.62, 0.68, 0.69, 0.82 and 0.67 and the RPDs of 1.54, 1.76, 1.52, 2.10 and 1.72, respectively. With the exception of aryl-C1, the PLSR model was more reliable than the ANN model for predicting C functional group distributions given limited amount of training data. Neither the PLSR nor the ANN model could predict the carbohydrate-C and O-aryl-C acceptably. Overall, laboratory-based hyperspectral imaging in combination with the PLSR modelling can be recommended for the analysis of C functional group distribution in the decomposing forest litterfall samples. © 2018 Elsevier B.V
    corecore