364 research outputs found
Preliminary evaluation test of the Langley cardiovascular conditioning suit concept
Cardiovascular conditioning suit to provide transmural pressure gradient in circulatory system during weightlessnes
Reply on `comment on our paper `Single two-level ion in an anharmonic-oscillator trap: Time evolution of the Q function and population inversion ''
We show here that the model Hamiltonian used in our paper for ion vibrating
in a q-analog harmonic oscillator trap and interacting with a classical
single-mode light field is indeed obtained by replacing the usual bosonic
creation and annihilation operators of the harmonic trap model by their
q-deformed counterparts. The approximations made in our paper amount to using
for the ion-laser interaction in a q-analog harmonic oscillator trap, the
operator F_{q}=exp{-(|\epsilon|^2}/2)}exp{i\epsilon A^{\dagger}}exp{i\epsilon
A}, which is analogous to the corresponding operator for ion in a harmonic
oscillator trap that is . In our article we do not claim to have diagonalized the
operator, , for which the basis states
|g,m> and |e,m> are not analytic vectors.Comment: Revtex, 4pages. To be Published in Physical Review A59, NO.4(April
99
Analytical model of non-Markovian decoherence in donor-based charge quantum bits
We develop an analytical model for describing the dynamics of a donor-based
charge quantum bit (qubit). As a result, the quantum decoherence of the qubit
is analytically obtained and shown to reveal non-Markovian features: The
decoherence rate varies with time and even attains negative values, generating
a non-exponential decay of the electronic coherence and a later recoherence.
The resulting coherence time is inversely proportional to the temperature, thus
leading to low decoherence below a material dependent characteristic
temperature.Comment: 19 pages, 3 figure
Schr\"{o}dinger cat state of trapped ions in harmonic and anharmonic oscillator traps
We examine the time evolution of a two level ion interacting with a light
field in harmonic oscillator trap and in a trap with anharmonicities. The
anharmonicities of the trap are quantified in terms of the deformation
parameter characterizing the q-analog of the harmonic oscillator trap.
Initially the ion is prepared in a Schr\"{o}dinger cat state. The entanglement
of the center of mass motional states and the internal degrees of freedom of
the ion results in characteristic collapse and revival pattern. We calculate
numerically the population inversion I(t), quasi-probabilities and
partial mutual quantum entropy S(P), for the system as a function of time.
Interestingly, small deformations of the trap enhance the contrast between
population inversion collapse and revival peaks as compared to the zero
deformation case. For \beta =3 and determines the average number
of trap quanta linked to center of mass motion) the best collapse and revival
sequence is obtained for \tau =0.0047 and \tau =0.004 respectively. For large
values of \tau decoherence sets in accompanied by loss of amplitude of
population inversion and for \tau \sim 0.1 the collapse and revival phenomenon
disappear. Each collapse or revival of population inversion is characterized by
a peak in S(P) versus t plot. During the transition from collapse to revival
and vice-versa we have minimum mutual entropy value that is S(P)=0. Successive
revival peaks show a lowering of the local maximum point indicating a
dissipative irreversible change in the ionic state. Improved definition of
collapse and revival pattern as the anharminicity of the trapping potential
increases is also reflected in the Quasi- probability versus t plots.Comment: Revised version, 16 pages,6 figures. Revte
Quantum integrability and Bethe ansatz solution for interacting matter-radiation systems
A unified integrable system, generating a new series of interacting
matter-radiation models with interatomic coupling and different atomic
frequencies, is constructed and exactly solved through algebraic Bethe ansatz.
Novel features in Rabi oscillation and vacuum Rabi splitting are shown on the
example of an integrable two-atom Buck-Sukumar model with resolution of some
important controversies in the Bethe ansatz solution including its possible
degeneracy for such models.Comment: Latex, 7 pages, 1 figure. Final version to be published in J Phys A
(as Letter
Sympathetic ground state cooling and coherent manipulation with two-ion-crystals
We have cooled a two-ion-crystal to the ground state of its collective modes
of motion. Laser cooling, more specific resolved sideband cooling is performed
sympathetically by illuminating only one of the two Ca ions in the
crystal. The heating rates of the motional modes of the crystal in our linear
trap have been measured, and we found them considerably smaller than those
previously reported by Q. Turchette {\em et. al.} Phys. Rev. A 61, 063418
(2000) in the case of trapped Be ions. After the ground state is
prepared, coherent quantum state manipulation of the atomic population can be
performed. Within the coherence time, up to 12 Rabi oscillations are observed,
showing that many coherent manipulations can be achieved. Coherent excitation
of each ion individually and ground state cooling are important tools for the
realization of quantum information processing in ion traps
Entanglement sudden birth of two trapped ions interacting with a time-dependent laser field
We explore and develop the mathematics of the two multi-level ions. In
particular, we describe some new features of quantum entanglement in two
three-level trapped ions confined in a one-dimensional harmonic potential,
allowing the instantaneous position of the center-of-mass motion of the ions to
be explicitly time-dependent. By solving the exact dynamics of the system, we
show how survivability of the quantum entanglement is determined by a specific
choice of the initial state settings.Comment: 13 pages, 4 figure
Quantum mechanical counterpart of nonlinear optics
Raman-type laser excitation of a trapped atom allows one to realize the
quantum mechanical counterpart of phenomena of nonlinear optics, such as
Kerr-type nonlinearities, parametric amplification, and multi-mode mixing.
Additionally, huge nonlinearities emerge from the interference of the atomic
wave function with the laser waves. They lead to a partitioning of the phase
space accompanied by a significantly different action of the time evolution in
neighboring phase-space zones. For example, a nonlinearly modified coherent
"displacement" of the motional quantum state may induce strong amplitude
squeezing and quantum interferences.Comment: 6 pages, 4 figures, to be published in Phys. Rev. A 55 (June
Dark pair coherent states of the motion of a trapped ion
We propose a scheme for generating vibrational pair coherent states of the
motion of an ion in a two-dimensional trap. In our scheme, the trapped ion is
excited bichromatically by three laser beams along different directions in the
X-Y plane of the ion trap. We show that if the initial vibrational state is
given by a two-mode Fock state, the final steady state, indicated by the
extinction of the fluorescence emitted by the ion, is a pure state. The
motional state of the ion in the equilibrium realizes that of the
highly-correlated pair coherent state.Comment: 14 pages, 3 figure
Quantum integrable multi atom matter-radiation models with and without rotating wave approximation
New integrable multi-atom matter-radiation models with and without rotating
wave approximation (RWA) are constructed and exactly solved through algebraic
Bethe ansatz. The models with RWA are generated through ancestor model approach
in an unified way. The rational case yields the standard type of
matter-radiaton models, while the trigonometric case corresponds to their
q-deformations. The models without RWA are obtained from the elliptic case at
the Gaudin and high spin limit.Comment: 9 pages, no figure, talk presented in int. conf. NEEDS04 (Gallipoli,
Italy, July 2004
- …
