3,757 research outputs found
On the Role of Low-Energy CP Violation in Leptogenesis
The link between low-energy CP violation and leptogenesis became more
accessible with the understanding of flavor effects. However, a definite
well-motivated model where such a link occurs was still lacking. Adjoint SU(5)
is a simple grand unified theory where neutrino masses are generated through
the Type I and Type III seesaw mechanisms, and the lepton asymmetry is
generated by the fermionic triplet responsible for the Type III seesaw. We
focus exclusively on the case of inverted hierarchy for neutrinos, and we show
that successful flavored leptogenesis in this theory strongly points towards
low-energy CP violation. Moreover, since the range of allowed masses for the
triplet is very restricted, we find that the discovery at the LHC of new states
present in the theory, together with proton decay and unification of gauge
couplings, can conspire to provide a hint in favor of leptogenesis.Comment: 12 pages, 6 figure
Dirac phase leptogenesis
I present here a concise summary of the preprint arXiv:0707.3024, written in
collaboration with A. Anisimov and P. Di Bari. There we discuss leptogenesis
when {\em CP} violation stems exlusively from the Dirac phase in the PMNS
mixing matrix. Under this assumption it turns out that the situation is very
constrained when a hierarchical heavy right-handed (RH) neutrino spectrum is
considered: the allowed regions are small and the final asymmetry depends on
the initial conditions. On the other hand, for a quasi-degenerate spectrum of
RH neutrinos, the {\em CP} asymmetry can be enhanced and the situation becomes
much more favorable, with no dependence on the initial conditions.
Interestingly, in the extreme case of resonant leptogenesis, in order to match
the observed baryon asymmetry of the Universe, we obtain a lower bound on \sin
\q_{13} which depends on the lightest active neutrino mass m_1.Comment: 3 pages, 2 figures, contribution to the proceedings of the TAUP 07
conference, Sep. 11-15, Sendai, Japa
Minimal Lepton Flavour Violation and Leptogenesis with exclusively low-energy CP Violation
We study the implications of a successful leptogenesis within the framework
of Minimal Lepton Flavour Violation combined with radiative resonant
leptogenesis and the PMNS matrix being the only source of CP violation, which
can be obtained provided flavour effects are taken into account. We find that
the right amount of the baryon asymmetry of the universe can be generated under
the conditions of a normal hierarchy of the light neutrino masses, a
non-vanishing Majorana phase, sin(theta_{13})>0.13 and m_{nu,lightest}<0.04 eV.
If this is fulfilled, we find strong correlations among ratios of charged LFV
processes.Comment: published in JHEP, small change
Testing post-Newtonian theory with gravitational wave observations
The Laser Interferometric Space Antenna (LISA) will observe supermassive
black hole binary mergers with amplitude signal-to-noise ratio of several
thousands. We investigate the extent to which such observations afford
high-precision tests of Einstein's gravity. We show that LISA provides a unique
opportunity to probe the non-linear structure of post-Newtonian theory both in
the context of general relativity and its alternatives.Comment: 9 pages, 2 figure
Wash-Out in N_2-dominated leptogenesis
We study the wash-out of a cosmological baryon asymmetry produced via
leptogenesis by subsequent interactions. Therefore we focus on a scenario in
which a lepton asymmetry is established in the out-of-equilibrium decays of the
next-to-lightest right-handed neutrino. We apply the full classical Boltzmann
equations without the assumption of kinetic equilibrium and including all
quantum statistical factors to calculate the wash-out of the lepton asymmetry
by interactions of the lightest right-handed state. We include scattering
processes with top quarks in our analysis. This is of particular interest since
the wash-out is enhanced by scatterings and the use of mode equations with
quantum statistical distribution functions. In this way we provide a
restriction on the parameter space for this scenarios.Comment: 26 pages, 4 figures, profound revision, exposition is now in flavor
notation, one plot and discussion added, numerical error corrected, three
plots changed, text polished, main results remain unchanged, reference
added,matches published versio
Gravitational-Wave Inspiral of Compact Binary Systems to 7/2 Post-Newtonian Order
The inspiral of compact binaries, driven by gravitational-radiation reaction,
is investigated through 7/2 post-Newtonian (3.5PN) order beyond the quadrupole
radiation. We outline the derivation of the 3.5PN-accurate binary's
center-of-mass energy and emitted gravitational flux. The analysis consistently
includes the relativistic effects in the binary's equations of motion and
multipole moments, as well as the contributions of tails, and tails of tails,
in the wave zone. However the result is not fully determined because of some
physical incompleteness, present at the 3PN order, of the model of
point-particle and the associated Hadamard-type self-field regularization. The
orbital phase, whose prior knowledge is crucial for searching and analyzing the
inspiral signal, is computed from the standard energy balance argument.Comment: 12 pages, version which includes the correction of an Erratum to be
published in Phys. Rev. D (2005
Inspiralling compact binaries in quasi-elliptical orbits: The complete third post-Newtonian energy flux
The instantaneous contributions to the 3PN gravitational wave luminosity from
the inspiral phase of a binary system of compact objects moving in a quasi
elliptical orbit is computed using the multipolar post-Minkowskian wave
generation formalism. The necessary inputs for this calculation include the 3PN
accurate mass quadrupole moment for general orbits and the mass octupole and
current quadrupole moments at 2PN. Using the recently obtained 3PN
quasi-Keplerian representation of elliptical orbits the flux is averaged over
the binary's orbit. Supplementing this by the important hereditary
contributions arising from tails, tails-of-tails and tails squared terms
calculated in a previous paper, the complete 3PN energy flux is obtained. The
final result presented in this paper would be needed for the construction of
ready-to-use templates for binaries moving on non-circular orbits, a plausible
class of sources not only for the space based detectors like LISA but also for
the ground based ones.Comment: 40 pages. Minor changes in text throughout. Minor typos in Eqs.
(3.3b), (7.7f), (8.19d) and (8.20) corrected. Matches the published versio
Full Boltzmann equations for leptogenesis including scattering
We study the evolution of a cosmological baryon asymmetry produced via
leptogenesis by means of the full classical Boltzmann equations, without the
assumption of kinetic equilibrium and including all quantum statistical
factors. Beginning with the full mode equations we derive the usual equations
of motion for the right-handed neutrino number density and integrated lepton
asymmetry, and show explicitly the impact of each assumption on these
quantities. For the first time, we investigate also the effects of scattering
of the right-handed neutrino with the top quark to leading order in the Yukawa
couplings by means of the full Boltzmann equations. We find that in our full
Boltzmann treatment the final lepton asymmetry can be suppressed by as much as
a factor of 1.5 in the weak wash-out regime (K<1), compared to the usual
integrated approach which assumes kinetic equilibrium and neglects quantum
statistics. This suppression is in contrast with the enhancement seen in some
previous studies that considered only decay and inverse decay of the
right-handed neutrino. However, this suppression quickly decreases as we
increase K. In the strong wash-out regime (K>1), the full Boltzmann treatment
and the integrated approach give nearly identical final lepton asymmetries
(within 10 % of each other at K>3). Finally, we show that the opposing effects
of quantum statistics on decays/inverse decays and the scattering processes
tend to reduce the net importance of scattering on leptogenesis in the full
treatment compared to the integrated approach.Comment: 39 pages, 8 figures, typos corrected, replaced to match published
versio
Propagation of gravitational waves from slow motion sources in a Coulomb type potential
We consider the propagation of gravitational waves generated by slow motion
sources in Coulomb type potential due to the mass of the source. Then, the
formula for gravitational waveform including tail is obtained in a
straightforward manner by using the spherical Coulomb function. We discuss its
relation with the formula in the previous work.Comment: 13 pages, no figures, to be published in Phys. Rev.
- …
