2,412 research outputs found

    Elastic-plastic stress concentrations around crack-like notches in continuous fiber reinforced metal matrix composites

    Get PDF
    Continuous fiber silicon-carbide/aluminum composite laminates with slits were tested statically to failure. Five different layups were examined: (0) sub 8, (0 sub 2/ + or - 45) sub s, (0/90) sub 2s), (0/ + or - 45/90 sub s), and (+ or - 45) sub 2s. Either a 9.5 or a 19 mm slit was machined in the center of each specimen. The strain distribution ahead of the slit tip was found experimentally with a series of strain gages bonded ahead of the slit tip. A three-dimensional finite element program (PAFAC) was used to predict the strain distribution ahead of the slit tip for several layups. For all layups, except the (0) sub 8, the yielding of the metal matrix caused the fiber stress concentration factor to increase with increasing load. This is contrary to the behavior seen in homogeneous materials where yielding causes the stress concentration to drop. For the (0) sub 8 laminate, yielding of the matrix caused a decrease in the fiber stress concentration. The finite element analysis predicted these trends correctly

    Effect of fiber-matrix debonding on notched strength of titanium metal matrix composites

    Get PDF
    Two specimen configuration of a (0/90)2s SCS-6/Ti-15-3 laminate were tested and analyzed: a center hole (CH) specimen and a double edge notch (DEN) specimen. The two specimen configurations failed at similar stress levels. Two analytical techniques, a 3-D finite-element analysis and a macro-micromechanical analysis were used to predict the overall stress-deformation behavior and the notch-tip fiber-matrix interface stresses in both configurations

    Finite-element analyses and fracture simulation in thin-sheet aluminum alloy

    Get PDF
    A two-dimensional, elastic-plastic finite-element analysis was used with a critical crack-tip-opening angle (CTOA) fracture criterion to model stable crack growth in thin-sheet 2024-T3 aluminum alloy under monotonic loading after precracking at different cyclic stress levels. Tests were conducted on three types of specimens: middle-crack, three-hole-crack and blunt-notch tensile specimens. An experiment technique was developed to measure CTOA during crack growth initiation and stable tearing using a high-resolution video camera and recorder. Crack front shapes were also measured during initiation and stable tearing using a fatigue marker-load technique. Three-dimensional elastic-plastic finite-element analyses of these crack shapes for stationary cracks were conducted to study the crack-front opening displacements. Predicted load against crack extension on middle-crack tension specimens agreed well with test results even for large-scale plastic deformations. The analyses were able to predict the effects of specimen size and precracking stress history on stable tearing. Predicted load against load-line displacements agreed well with test results up to maximum load bu the analyses tended to overpredict displacements as crack grew beyond the maximum load under displacement-controlled conditions. During the initiation phase, the measured CTOA values were high but decreased and remained nearly constant after a small amount of stable tearing. The constant value of CTOA agree well with the calculated value from the finite-element analysis. The larger CTOA values measured at the sheet surface during the initiation phase may be associated with the crack tunneling observed in the tests. Three-dimensional analyses for nonstraight crack fronts predicted much higher displacements near the free surface than in the interior

    Fatigue damage in cross-ply titanium metal matrix composites containing center holes

    Get PDF
    The development of fatigue damage in (0/90) sub SCS-6/TI-15-3 laminates containing center holes was studied. Stress levels required for crack initiation in the matrix were predicted using an effective strain parameter and compared to experimental results. Damage progression was monitored at various stages of fatigue loading. In general, a saturated state of damage consisting of matrix cracks and fiber matrix debonding was obtained which reduced the composite modulus. Matrix cracks were bridged by the 0 deg fibers. The fatigue limit (stress causing catastrophic fracture of the laminates) was also determined. The static and post fatigue residual strengths were accurately predicted using a three dimensional elastic-plastic finite element analysis. The matrix damage that occurred during fatigue loading significantly reduced the notched strength
    corecore